THB1, a putative transmembrane protein that causes hybrid breakdown in rice.

IF 2 4区 农林科学 Q2 AGRONOMY Breeding Science Pub Date : 2024-06-01 Epub Date: 2024-06-13 DOI:10.1270/jsbbs.23065
Tae Wakabayashi, Kiyoaki Kato
{"title":"THB1, a putative transmembrane protein that causes hybrid breakdown in rice.","authors":"Tae Wakabayashi, Kiyoaki Kato","doi":"10.1270/jsbbs.23065","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid breakdown is a post-zygotic reproductive isolation that hinders genetic exchange between species or populations in both animals and plants. Two complementary recessive genes, <i>temperature sensitive hybrid breakdown1</i> (<i>thb1</i>) and <i>thb2</i>, cause hybrid breakdown in rice (<i>Oryza sativa</i>). The present study delimited the <i>THB1</i> locus to a 9.1-kb sequence, containing a single gene encoding a putative transmembrane protein with unknown functions. Haplotype analysis of <i>THB1</i> in the two core collections of 119 accessions revealed that these accessions were divided into 22 haplotypes. A test cross with <i>thb2</i> carrier showed that haplotype2 (H2) was assigned to <i>thb1</i> and was restricted to <i>temperate japonica</i>. A nonsynonymous nucleotide polymorphism (SNP) specific to H2 was identified as a causal mutation in <i>thb1</i>. A test cross with <i>thb1</i> carrier indicated that six accessions, including <i>temperate japonica</i>, <i>tropical japonica</i>, and <i>indica</i>, carried <i>thb2</i>. These results suggest that <i>thb1</i> has recently evolved in <i>temperate japonica</i>, whereas <i>thb2</i> arose in an ancient <i>japonica</i> and introgressed into the present three subgroups. Furthermore, we developed a derived cleaved amplified polymorphic sequence (dCAPS) marker to detect causal SNP in <i>THB1</i>. Our findings provide new insights into reproductive isolation and may benefit rice breeding.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 3","pages":"193-203"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.23065","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid breakdown is a post-zygotic reproductive isolation that hinders genetic exchange between species or populations in both animals and plants. Two complementary recessive genes, temperature sensitive hybrid breakdown1 (thb1) and thb2, cause hybrid breakdown in rice (Oryza sativa). The present study delimited the THB1 locus to a 9.1-kb sequence, containing a single gene encoding a putative transmembrane protein with unknown functions. Haplotype analysis of THB1 in the two core collections of 119 accessions revealed that these accessions were divided into 22 haplotypes. A test cross with thb2 carrier showed that haplotype2 (H2) was assigned to thb1 and was restricted to temperate japonica. A nonsynonymous nucleotide polymorphism (SNP) specific to H2 was identified as a causal mutation in thb1. A test cross with thb1 carrier indicated that six accessions, including temperate japonica, tropical japonica, and indica, carried thb2. These results suggest that thb1 has recently evolved in temperate japonica, whereas thb2 arose in an ancient japonica and introgressed into the present three subgroups. Furthermore, we developed a derived cleaved amplified polymorphic sequence (dCAPS) marker to detect causal SNP in THB1. Our findings provide new insights into reproductive isolation and may benefit rice breeding.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THB1,一种导致水稻杂交破裂的假定跨膜蛋白。
杂交破裂是一种杂交后的生殖隔离,它阻碍了动物和植物物种或种群之间的遗传交流。两个互补隐性基因--温度敏感杂交破裂1(thb1)和thb2--导致了水稻(Oryza sativa)的杂交破裂。本研究将 THB1 基因座限定为一个 9.1 kb 的序列,其中包含一个编码功能未知的假定跨膜蛋白的单基因。对两个核心收集的 119 个品种进行的 THB1 单倍型分析表明,这些品种分为 22 个单倍型。与 thb2 携带者的测试杂交表明,单倍型 2(H2)被归入 thb1,并且仅限于温带粳稻。H2 的一个非同义核苷酸多态性(SNP)被确定为 thb1 的致病突变。与 thb1 携带者的试验杂交表明,包括温带粳稻、热带粳稻和籼稻在内的 6 个品种携带 thb2。这些结果表明,thb1 是最近在温带粳稻中进化出来的,而 thb2 则产生于古老的粳稻,并导入到现在的三个亚群中。此外,我们还开发了一种衍生的裂解扩增多态性序列(dCAPS)标记来检测 THB1 的因果 SNP。我们的研究结果为生殖隔离提供了新的见解,并可能有利于水稻育种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Breeding Science
Breeding Science 农林科学-农艺学
CiteScore
4.90
自引率
4.20%
发文量
37
审稿时长
1.5 months
期刊介绍: Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews related to breeding. Research Papers are standard original articles. Notes report new cultivars, breeding lines, germplasms, genetic stocks, mapping populations, database, software, and techniques significant and useful for breeding. Reviews summarize recent and historical events related breeding. Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.
期刊最新文献
Identification of a major QTL conferring resistance to wheat yellow mosaic virus derived from the winter wheat 'Hokkai 240' on chromosome 2AS. Phenotyping and a genome-wide association study of elite lines of pearl millet. Screening corn hybrids for early-stage drought stress tolerance using SPAR phenotyping platform. Substitution mapping and characterization of brown planthopper resistance genes from traditional rice cultivar 'Rathu Heenati' (Oryza sativa L.). THB1, a putative transmembrane protein that causes hybrid breakdown in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1