{"title":"Reconfiguring the Coordination Structure in Deep Eutectic Electrolytes for Enabling Stable Operation of Zinc-Ion Batteries.","authors":"Qiang Guo, Weixing Mo, Jianhang Huang, Feng Liu","doi":"10.1021/acs.nanolett.4c03480","DOIUrl":null,"url":null,"abstract":"<p><p>Highly stable aqueous Zn-ion batteries are of great importance for commercial applications. The challenging issues of interfacial side reactions and rampant dendrite growth cause short circuit and premature failure of aqueous Zn-ion batteries. Herein, a hydrated deep eutectic electrolyte is formulated to tackle such problems, which adopts 1,3-propanediol as a cosolvent. 1,3-Propanediol molecules can enter into the Zn<sup>2+</sup> solvation structure to from a lean-water electrolyte and drastically diminish the activity of water molecules through reinforcing the hydrogen bond network. Meanwhile, PDO molecules exclude the neighboring water to modulate the electric double layer configuration, thus impeding water-mediated side reactions and inducing an inorganic-rich interphase. Consequently, this hydrated deep eutectic electrolyte ensures long-term stability of Zn-Zn, Zn-Cu, and Zn-I<sub>2</sub> cells. The favorable influence exerted by PDO molecules provides the guidance for constructing high-performance aqueous Zn-ion batteries.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03480","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Highly stable aqueous Zn-ion batteries are of great importance for commercial applications. The challenging issues of interfacial side reactions and rampant dendrite growth cause short circuit and premature failure of aqueous Zn-ion batteries. Herein, a hydrated deep eutectic electrolyte is formulated to tackle such problems, which adopts 1,3-propanediol as a cosolvent. 1,3-Propanediol molecules can enter into the Zn2+ solvation structure to from a lean-water electrolyte and drastically diminish the activity of water molecules through reinforcing the hydrogen bond network. Meanwhile, PDO molecules exclude the neighboring water to modulate the electric double layer configuration, thus impeding water-mediated side reactions and inducing an inorganic-rich interphase. Consequently, this hydrated deep eutectic electrolyte ensures long-term stability of Zn-Zn, Zn-Cu, and Zn-I2 cells. The favorable influence exerted by PDO molecules provides the guidance for constructing high-performance aqueous Zn-ion batteries.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.