Jiawen Zhang, Teng-Fei Xiao, Hongmei Zhao, Jie Kong, Zhuoran Kuang, Meng Zhou, Guo-Qiang Xu, Yang Li, Andong Xia
{"title":"Photocatalytic Mechanisms of Organic Thermally Activated Delayed Fluorescence Compounds.","authors":"Jiawen Zhang, Teng-Fei Xiao, Hongmei Zhao, Jie Kong, Zhuoran Kuang, Meng Zhou, Guo-Qiang Xu, Yang Li, Andong Xia","doi":"10.1021/acs.jpclett.4c02670","DOIUrl":null,"url":null,"abstract":"<p><p>Reverse intersystem crossing (RISC) has become possible by minimizing the energy gap between the first excited singlet (S<sub>1</sub>) and triplet state (T<sub>1</sub>), which facilitates the thermally activated delayed fluorescence (TADF). Due to the small singlet-triplet energy gap, the S<sub>1</sub> and T<sub>1</sub> states exhibit comparable redox reactivity, leading organic TADF compounds to be potent photocatalysts. Here, we report such TADF compounds with multiple donor units designed as an efficient photocatalyst for the direct C(sp<sup>3</sup>)-H carbamoylation of saturated aza-heterocycles. The results obtained by photophysical investigations and chemical calculations confirm that both the S<sub>1</sub> and T<sub>1</sub> states are involved in the photocatalysis cycle, with the fast spin-flip from the S<sub>1</sub> to triplet states being a crucial factor in the enhancement of catalytic performance. The findings will be beneficial for the design of novel, efficient organic photocatalysis with TADF characteristics and aid in the development of organic photocatalysis.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"11784-11791"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02670","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reverse intersystem crossing (RISC) has become possible by minimizing the energy gap between the first excited singlet (S1) and triplet state (T1), which facilitates the thermally activated delayed fluorescence (TADF). Due to the small singlet-triplet energy gap, the S1 and T1 states exhibit comparable redox reactivity, leading organic TADF compounds to be potent photocatalysts. Here, we report such TADF compounds with multiple donor units designed as an efficient photocatalyst for the direct C(sp3)-H carbamoylation of saturated aza-heterocycles. The results obtained by photophysical investigations and chemical calculations confirm that both the S1 and T1 states are involved in the photocatalysis cycle, with the fast spin-flip from the S1 to triplet states being a crucial factor in the enhancement of catalytic performance. The findings will be beneficial for the design of novel, efficient organic photocatalysis with TADF characteristics and aid in the development of organic photocatalysis.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.