C Lalthlansanga, Suryateja Pottipati, Bijayananda Mohanty, Ajay S. Kalamdhad
{"title":"Role of cow dung and sawdust during the bioconversion of swine waste through the rotary drum composting process","authors":"C Lalthlansanga, Suryateja Pottipati, Bijayananda Mohanty, Ajay S. Kalamdhad","doi":"10.1007/s10661-024-13395-3","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for strategic and environment-friendly swine waste (SW) management is critical in the northeastern states of India, which account for 46.7% of the country’s total swine population. This paper examines nutrient-rich compost production from SW with minimal negative environmental fallout, using cow dung microbiological inoculum and sawdust bulking agent for expeditious rotary drum composting. Aerobic biodegradation conducted in a rotary drum composter (RDC), raised the feedstock temperature to > 40 °C in just 24 h, which stimulated thermophilic decomposition. The thermophilic phase remained for 16 days in the cow dung-amended 10:1:1 (swine waste:cow dung:sawdust) trial (RDC1) versus 7 days for the sawdust-amended 10:1 (swine waste:sawdust) trial (RDC2). After 20 days, the RDC1 product exhibited superior nutritional characteristics, with a total nitrogen content of 2.52%, a significantly reduced coliform population, and an overall weight loss of 25%. These findings highlight that incorporating cow dung (10% w/w) into SW and bulking agents through RDC produces high-quality compost in just 20 days. Thus, the livestock industry benefits significantly from this laboratory-scale method of improved waste management by producing valuable bioproducts via RDC.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13395-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for strategic and environment-friendly swine waste (SW) management is critical in the northeastern states of India, which account for 46.7% of the country’s total swine population. This paper examines nutrient-rich compost production from SW with minimal negative environmental fallout, using cow dung microbiological inoculum and sawdust bulking agent for expeditious rotary drum composting. Aerobic biodegradation conducted in a rotary drum composter (RDC), raised the feedstock temperature to > 40 °C in just 24 h, which stimulated thermophilic decomposition. The thermophilic phase remained for 16 days in the cow dung-amended 10:1:1 (swine waste:cow dung:sawdust) trial (RDC1) versus 7 days for the sawdust-amended 10:1 (swine waste:sawdust) trial (RDC2). After 20 days, the RDC1 product exhibited superior nutritional characteristics, with a total nitrogen content of 2.52%, a significantly reduced coliform population, and an overall weight loss of 25%. These findings highlight that incorporating cow dung (10% w/w) into SW and bulking agents through RDC produces high-quality compost in just 20 days. Thus, the livestock industry benefits significantly from this laboratory-scale method of improved waste management by producing valuable bioproducts via RDC.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.