Deciphering HMGB1: Across a spectrum of DNA and nucleosome dynamics.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Biology International Pub Date : 2024-11-17 DOI:10.1002/cbin.12260
Ishu Gupta, Ashok K Patel
{"title":"Deciphering HMGB1: Across a spectrum of DNA and nucleosome dynamics.","authors":"Ishu Gupta, Ashok K Patel","doi":"10.1002/cbin.12260","DOIUrl":null,"url":null,"abstract":"<p><p>HMGB1 is the most abundant nonhistone nuclear protein, which has been widely studied for its roles in the cytoplasm as an autophagy mediator and in the extracellular matrix as an inflammatory molecule. Studies concerning HMGB1's actual role and its binding within the nucleus are inadequate. Through this in vitro study, we aimed to discern the binding parameters of HMGB1 with various types of DNA, nucleosomes, and chromatin. HMGB1 binds differentially to different DNA, with a high affinity for altered DNA structures such as triplex and bulge DNA. Remodelling of nucleosome by CHD7 remodeller was negatively impacted by the binding of HMGB1. We also found that HMGB1 binds to the linker DNA of chromatin. Findings from this study shed light on the diverse roles HMGB1 may play in transcription, gene expression, viral replication, CHARGE syndrome and so forth.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.12260","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

HMGB1 is the most abundant nonhistone nuclear protein, which has been widely studied for its roles in the cytoplasm as an autophagy mediator and in the extracellular matrix as an inflammatory molecule. Studies concerning HMGB1's actual role and its binding within the nucleus are inadequate. Through this in vitro study, we aimed to discern the binding parameters of HMGB1 with various types of DNA, nucleosomes, and chromatin. HMGB1 binds differentially to different DNA, with a high affinity for altered DNA structures such as triplex and bulge DNA. Remodelling of nucleosome by CHD7 remodeller was negatively impacted by the binding of HMGB1. We also found that HMGB1 binds to the linker DNA of chromatin. Findings from this study shed light on the diverse roles HMGB1 may play in transcription, gene expression, viral replication, CHARGE syndrome and so forth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密 HMGB1:横跨 DNA 和核小体动力学谱系
HMGB1 是最丰富的非组蛋白核蛋白,其在细胞质中作为自噬介质和在细胞外基质中作为炎症分子的作用已被广泛研究。有关 HMGB1 的实际作用及其在细胞核内结合情况的研究尚不充分。通过这项体外研究,我们旨在了解 HMGB1 与各类 DNA、核小体和染色质的结合参数。HMGB1 与不同的 DNA 有不同的结合方式,它与三倍体和隆起 DNA 等改变了的 DNA 结构有很高的亲和力。CHD7 重塑器对核小体的重塑受到 HMGB1 结合的负面影响。我们还发现,HMGB1 与染色质的链接 DNA 结合。本研究的发现揭示了 HMGB1 在转录、基因表达、病毒复制、CHARGE 综合征等方面可能发挥的多种作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
期刊最新文献
Issue Information Decoding dynamic molecular interactions in cells. Wilms' tumor 1-associated protein aggravates ischemic stroke by promoting M1 polarization of microglia by enhancing PTGS2 mRNA stability in an m6A-dependent manner. DRIM modulates Src activation and regulates angiogenic functions in vascular endothelial cells. Therapeutic targeting of cGAS-STING pathway in lung cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1