SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury.

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and Cellular Biology Pub Date : 2025-01-01 Epub Date: 2024-11-18 DOI:10.1080/10985549.2024.2426282
Congmin Yan, Xin Lin, Jingting Guan, Wengang Ding, Ziyong Yue, Zhiqiang Tang, Xiangqi Meng, Bo Zhao, Zhiqiang Song, Dongmei Li, Tao Jiang
{"title":"SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury.","authors":"Congmin Yan, Xin Lin, Jingting Guan, Wengang Ding, Ziyong Yue, Zhiqiang Tang, Xiangqi Meng, Bo Zhao, Zhiqiang Song, Dongmei Li, Tao Jiang","doi":"10.1080/10985549.2024.2426282","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is a major cause of death in bacterial sepsis due to endothelial inflammation and endothelial permeability defects. Mitochondrial dysfunction is recognized as a key mediator in the pathogenesis of sepsis-induced ALI. Sirtuin 3 (SIRT3) is a histone protein deacetylase involved in preservation of mitochondrial function, which has been demonstrated in our previous study. Here, we investigated the effects of SIRT3 deficiency on impaired mitophagy to promote lung endothelial cells (ECs) pyroptosis during sepsis-induced ALI. We found that 3-TYP aggravated sepsis-induced ALI with increased lung ECs pyroptosis and enhanced NLRP3 activation. Mitochondrial reactive oxygen species (mtROS) and extracellular mitochondrial DNA (mtDNA) released from damaged mitochondria could be exacerbated in SIRT3 deficiency, which further elicit NLRP3 inflammasome activation in lung ECs during sepsis-induced ALI. Furthermore, Knockdown of SIRT3 contributed to impaired mitophagy via downregulating Parkin, which resulted in mitochondrial dysfunction. Moreover, pharmacological inhibition NLRP3 or restoration of SIRT3 attenuates sepsis-induced ALI and sepsis severity in vivo. Taken together, our results demonstrated SIRT3 deficiency facilitated mtROS production and cytosolic release of mtDNA by impaired Parkin-dependent mitophagy, promoting to lung ECs pyroptosis through the NLRP3 inflammasome activation, which providing potential therapeutic targets for sepsis-induced ALI.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-16"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2024.2426282","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute lung injury (ALI) is a major cause of death in bacterial sepsis due to endothelial inflammation and endothelial permeability defects. Mitochondrial dysfunction is recognized as a key mediator in the pathogenesis of sepsis-induced ALI. Sirtuin 3 (SIRT3) is a histone protein deacetylase involved in preservation of mitochondrial function, which has been demonstrated in our previous study. Here, we investigated the effects of SIRT3 deficiency on impaired mitophagy to promote lung endothelial cells (ECs) pyroptosis during sepsis-induced ALI. We found that 3-TYP aggravated sepsis-induced ALI with increased lung ECs pyroptosis and enhanced NLRP3 activation. Mitochondrial reactive oxygen species (mtROS) and extracellular mitochondrial DNA (mtDNA) released from damaged mitochondria could be exacerbated in SIRT3 deficiency, which further elicit NLRP3 inflammasome activation in lung ECs during sepsis-induced ALI. Furthermore, Knockdown of SIRT3 contributed to impaired mitophagy via downregulating Parkin, which resulted in mitochondrial dysfunction. Moreover, pharmacological inhibition NLRP3 or restoration of SIRT3 attenuates sepsis-induced ALI and sepsis severity in vivo. Taken together, our results demonstrated SIRT3 deficiency facilitated mtROS production and cytosolic release of mtDNA by impaired Parkin-dependent mitophagy, promoting to lung ECs pyroptosis through the NLRP3 inflammasome activation, which providing potential therapeutic targets for sepsis-induced ALI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在脓毒症诱导的急性肺损伤过程中,SIRT3缺陷通过损害有丝分裂来激活NLRP3炎症体,从而促进肺内皮细胞脓毒症。
急性肺损伤(ALI)是细菌性败血症的一个主要死因,其原因是内皮炎症和内皮通透性缺陷。线粒体功能障碍被认为是脓毒症诱发急性肺损伤发病机制中的一个关键介质。Sirtuin 3(SIRT3)是一种组蛋白去乙酰化酶,参与线粒体功能的保护,这已在我们之前的研究中得到证实。在此,我们研究了 SIRT3 缺乏对脓毒症诱导的 ALI 期间促进肺内皮细胞(ECs)热噬的有丝分裂受损的影响。我们发现,3-TYP会加重脓毒症诱导的ALI,增加肺内皮细胞的热解并增强NLRP3的激活。线粒体活性氧(mtROS)和受损线粒体释放的细胞外线粒体 DNA(mtDNA)在 SIRT3 缺乏时会加剧,从而进一步引发脓毒症诱发的 ALI 期间肺心肌中 NLRP3 炎性体的激活。此外,敲除 SIRT3 会通过下调 Parkin 导致线粒体功能障碍,从而导致有丝分裂吞噬功能受损。此外,药物抑制 NLRP3 或恢复 SIRT3 可减轻脓毒症诱导的 ALI 和体内脓毒症的严重程度。综上所述,我们的研究结果表明,SIRT3的缺乏会通过损害Parkin依赖的有丝分裂促进mtROS的产生和mtDNA的胞浆释放,并通过激活NLRP3炎性体促进肺ECs的脓毒症,这为脓毒症诱发的ALI提供了潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
期刊最新文献
Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. acp³U: A Conserved RNA Modification with Lessons Yet to Unfold. SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury. Mitogen-Activated Protein Kinase Phosphatase-5 is Required for TGF-β Signaling Through a JNK-Dependent Pathway. Erythropoietin Production in Embryonic Neural Cells is Controlled by Hypoxia Signaling and Histone Deacetylases with an Undifferentiated Cellular State.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1