Structural determinants of M2R involved in inhibition by Sigma-1R.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-11-15 DOI:10.1016/j.jbc.2024.108006
Chang Liu, I-Shan Chen, Muruj Barri, Ruth Murrell-Lagnado, Yoshihiro Kubo
{"title":"Structural determinants of M2R involved in inhibition by Sigma-1R.","authors":"Chang Liu, I-Shan Chen, Muruj Barri, Ruth Murrell-Lagnado, Yoshihiro Kubo","doi":"10.1016/j.jbc.2024.108006","DOIUrl":null,"url":null,"abstract":"<p><p>Sigma-1 receptor (S1R) is a multimodal chaperone protein which is implicated in various pathophysiological conditions including drug addiction, Alzheimer's disease and amyotrophic lateral sclerosis (ALS). S1R interacts with various ion channels and receptors on endoplasmic reticulum or plasma membrane (PM). It has been reported that S1R colocalizes with the M2-muscarinic acetylcholine receptor (M2R) on the soma of motoneurons, although a functional interaction between these two proteins hasn't been established. Here, we investigated the regulation of M2R signalling by S1R using electrophysiological recordings of GIRK currents in HEK293T cells. We observed that S1R strongly inhibited M2R-mediated activation of GIRK1/2, but the disease mutant linked to ALS, S1R E102Q, did not. The inhibitory effect of S1R was selective for M2R and wasn't seen when S1R was co-expressed with other G<sub>i/o</sub> coupled receptors including M4R. Chimeric and mutant receptors of M2R and M4R were generated and analysed, and this highlighted Ala401 in the transmembrane 6 domain (TM6) of M2R and Glu172 as well as Glu175 in the extracellular loop 2 region of M2R, as essential for the inhibition by S1R. Co-immunoprecipitation confirmed the physical interaction between M2R and S1R. Immunocytochemical labelling of M2R and S1R expressed in HeLa cells, HEK293T cells and cultured hippocampal neurons, showed clear PM expression of M2R throughout the cell which was decreased by coexpression with S1R but was still apparent. Taken together, our results show that S1R interacts with M2R to reduce both its PM expression and function, and this involves TM6 and the extracellular loop 2.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108006"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sigma-1 receptor (S1R) is a multimodal chaperone protein which is implicated in various pathophysiological conditions including drug addiction, Alzheimer's disease and amyotrophic lateral sclerosis (ALS). S1R interacts with various ion channels and receptors on endoplasmic reticulum or plasma membrane (PM). It has been reported that S1R colocalizes with the M2-muscarinic acetylcholine receptor (M2R) on the soma of motoneurons, although a functional interaction between these two proteins hasn't been established. Here, we investigated the regulation of M2R signalling by S1R using electrophysiological recordings of GIRK currents in HEK293T cells. We observed that S1R strongly inhibited M2R-mediated activation of GIRK1/2, but the disease mutant linked to ALS, S1R E102Q, did not. The inhibitory effect of S1R was selective for M2R and wasn't seen when S1R was co-expressed with other Gi/o coupled receptors including M4R. Chimeric and mutant receptors of M2R and M4R were generated and analysed, and this highlighted Ala401 in the transmembrane 6 domain (TM6) of M2R and Glu172 as well as Glu175 in the extracellular loop 2 region of M2R, as essential for the inhibition by S1R. Co-immunoprecipitation confirmed the physical interaction between M2R and S1R. Immunocytochemical labelling of M2R and S1R expressed in HeLa cells, HEK293T cells and cultured hippocampal neurons, showed clear PM expression of M2R throughout the cell which was decreased by coexpression with S1R but was still apparent. Taken together, our results show that S1R interacts with M2R to reduce both its PM expression and function, and this involves TM6 and the extracellular loop 2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参与 Sigma-1R 抑制作用的 M2R 结构决定因素。
Sigma-1 受体(S1R)是一种多模式伴侣蛋白,与药物成瘾、阿尔茨海默病和肌萎缩性脊髓侧索硬化症(ALS)等多种病理生理状况有关。S1R 与内质网或质膜上的各种离子通道和受体相互作用。有报道称,S1R 与运动神经元体节上的 M2-迷走神经乙酰胆碱受体(M2R)共定位,但这两种蛋白之间的功能性相互作用尚未确定。在这里,我们利用 HEK293T 细胞中 GIRK 电流的电生理记录研究了 S1R 对 M2R 信号的调控。我们观察到,S1R 能强烈抑制 M2R 介导的 GIRK1/2 激活,但与 ALS 相关的疾病突变体 S1R E102Q 却没有抑制作用。S1R 对 M2R 的抑制作用是选择性的,当 S1R 与包括 M4R 在内的其他 Gi/o 偶联受体共同表达时,抑制作用则不明显。对 M2R 和 M4R 的嵌合受体和突变受体进行了生成和分析,结果表明,M2R 跨膜 6 结构域(TM6)中的 Ala401 和 M2R 细胞外环 2 区域中的 Glu172 以及 Glu175 是 S1R 抑制作用的关键。共免疫沉淀证实了 M2R 和 S1R 之间的物理相互作用。在 HeLa 细胞、HEK293T 细胞和培养的海马神经元中表达的 M2R 和 S1R 的免疫细胞化学标记显示,M2R 在整个细胞中有明显的 PM 表达,与 S1R 共表达时,M2R 的表达减少,但仍很明显。综上所述,我们的研究结果表明,S1R 与 M2R 相互作用,降低了其 PM 表达和功能,这涉及 TM6 和细胞外环 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
Reduced S-nitrosylation of TGFβ1 elevates its binding affinity towards the receptor and promotes fibrogenic signaling in the breast. The acetylglucosaminyltransferase GnT-Ⅲ regulates erythroid differentiation through ERK/MAPK signaling. PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1