Plausible Action of N-(3,4-Dimethoxy-Phenyl)-6,7-Dimethoxyquinazoline-4-Amine (TKM01) as an Armor Against Alzheimer's Disease: In Silico and In Vivo Insights

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biochemical and Molecular Toxicology Pub Date : 2024-11-18 DOI:10.1002/jbt.70048
Mohd Kashif, Karthikeyan Chandrabose, Ashok Kumar Pandurangan
{"title":"Plausible Action of N-(3,4-Dimethoxy-Phenyl)-6,7-Dimethoxyquinazoline-4-Amine (TKM01) as an Armor Against Alzheimer's Disease: In Silico and In Vivo Insights","authors":"Mohd Kashif,&nbsp;Karthikeyan Chandrabose,&nbsp;Ashok Kumar Pandurangan","doi":"10.1002/jbt.70048","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Alzheimer's disease (AD) affects millions of people and has limited treatment options, thus making it a global health concern. Amyloid β (Aβ), a disrupted cholinergic system with high acetylcholinesterase (AChE), oxidative stress (OS), reduced antioxidants, and neuroinflammation are key factors influencing AD progression. Prior research has shown that AChE can interact with Aβ and increase its accumulation and neurotoxicity, so targeting AChEs and Aβ could be a potential therapeutic approach for AD treatment. It has been known that nonsteroidal anti-inflammatory drugs (NSAIDs) can inhibit Aβ accumulation. Previously, TKM01, a derivative of 4-anilinoquinazoline, has demonstrated inhibitory effects against GSK-3β—a regulator in AD progression. The current research included molecular docking studies of NSAIDs and TKM01 with Aβ and AChEs as targets. TKM01 exhibited a higher binding affinity with Aβ among all tested compounds. Molecular dynamic (MD) simulations confirmed the stability of the protein-TKM01 complexes. TKM01 also exhibited favorable drug-likeness properties, and no hepatoxicity was visualized in comparison with other compounds. Further, in vitro assay showed an inhibitory action of TKM01 (50–1200 µg/mL) on AChEs. In the in vivo studies on zebrafish larvae brains, we found that TKM01 (120 and 240 µg/mL) reduced the levels of AChEs and lipid peroxidation (LPO) and increased antioxidant superoxide dismutase (SOD) and catalase (CAT) in AlCl<sub>3</sub>(80 µM)-induced AD-like model. Additionally, TKM01 treatment was found to decrease pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. The current study demonstrates that TKM01 can be used to treat AD. Nonetheless, experimental validation is needed to reveal the cellular, sub-cellular, and molecular mechanisms and possible implications at a clinical stage.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) affects millions of people and has limited treatment options, thus making it a global health concern. Amyloid β (Aβ), a disrupted cholinergic system with high acetylcholinesterase (AChE), oxidative stress (OS), reduced antioxidants, and neuroinflammation are key factors influencing AD progression. Prior research has shown that AChE can interact with Aβ and increase its accumulation and neurotoxicity, so targeting AChEs and Aβ could be a potential therapeutic approach for AD treatment. It has been known that nonsteroidal anti-inflammatory drugs (NSAIDs) can inhibit Aβ accumulation. Previously, TKM01, a derivative of 4-anilinoquinazoline, has demonstrated inhibitory effects against GSK-3β—a regulator in AD progression. The current research included molecular docking studies of NSAIDs and TKM01 with Aβ and AChEs as targets. TKM01 exhibited a higher binding affinity with Aβ among all tested compounds. Molecular dynamic (MD) simulations confirmed the stability of the protein-TKM01 complexes. TKM01 also exhibited favorable drug-likeness properties, and no hepatoxicity was visualized in comparison with other compounds. Further, in vitro assay showed an inhibitory action of TKM01 (50–1200 µg/mL) on AChEs. In the in vivo studies on zebrafish larvae brains, we found that TKM01 (120 and 240 µg/mL) reduced the levels of AChEs and lipid peroxidation (LPO) and increased antioxidant superoxide dismutase (SOD) and catalase (CAT) in AlCl3(80 µM)-induced AD-like model. Additionally, TKM01 treatment was found to decrease pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. The current study demonstrates that TKM01 can be used to treat AD. Nonetheless, experimental validation is needed to reveal the cellular, sub-cellular, and molecular mechanisms and possible implications at a clinical stage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N-(3,4-二甲氧基苯基)-6,7-二甲氧基喹唑啉-4-胺(TKM01)作为阿尔茨海默病防护剂的合理作用:硅学和体内观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
期刊最新文献
Issue information Astaxanthin-S-Allyl Cysteine Ester Protects Pancreatic β-Cell From Glucolipotoxicity by Suppressing Oxidative Stress, Endoplasmic Reticulum Stress and mTOR Pathway Dysregulation Identification of the Oncogenic Role of the Circ_0001326/miR-577/VDAC1 Cascade in Prostate Cancer In Vitro and Vivo Experiments Revealing Astragalin Inhibited Lung Adenocarcinoma Development via LINC00582/miR-140-3P/PDPK1 Paeonol Alleviates Subarachnoid Hemorrhage Injury in Rats Through Upregulation of SIRT1 and Inhibition of HMGB1/TLR4/MyD88/NF-κB Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1