Automatic identification of the endangered hawksbill sea turtle behavior using deep learning and cross-species transfer learning.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-12-15 Epub Date: 2024-12-23 DOI:10.1242/jeb.249232
Lorène Jeantet, Kukhanya Zondo, Cyrielle Delvenne, Jordan Martin, Damien Chevallier, Emmanuel Dufourq
{"title":"Automatic identification of the endangered hawksbill sea turtle behavior using deep learning and cross-species transfer learning.","authors":"Lorène Jeantet, Kukhanya Zondo, Cyrielle Delvenne, Jordan Martin, Damien Chevallier, Emmanuel Dufourq","doi":"10.1242/jeb.249232","DOIUrl":null,"url":null,"abstract":"<p><p>The accelerometer, an onboard sensor, enables remote monitoring of animal posture and movement, allowing researchers to deduce behaviors. Despite the automated analysis capabilities provided by deep learning, data scarcity remains a challenge in ecology. We explored transfer learning to classify behaviors from acceleration data of critically endangered hawksbill sea turtles (Eretmochelys imbricata). Transfer learning reuses a model trained on one task from a large dataset to solve a related task. We applied this method using a model trained on green turtles (Chelonia mydas) and adapted it to identify hawksbill behaviors such as swimming, resting and feeding. We also compared this with a model trained on human activity data. The results showed an 8% and 4% F1-score improvement with transfer learning from green turtle and human datasets, respectively. Transfer learning allows researchers to adapt existing models to their study species, leveraging deep learning and expanding the use of accelerometers for wildlife monitoring.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249232","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The accelerometer, an onboard sensor, enables remote monitoring of animal posture and movement, allowing researchers to deduce behaviors. Despite the automated analysis capabilities provided by deep learning, data scarcity remains a challenge in ecology. We explored transfer learning to classify behaviors from acceleration data of critically endangered hawksbill sea turtles (Eretmochelys imbricata). Transfer learning reuses a model trained on one task from a large dataset to solve a related task. We applied this method using a model trained on green turtles (Chelonia mydas) and adapted it to identify hawksbill behaviors such as swimming, resting and feeding. We also compared this with a model trained on human activity data. The results showed an 8% and 4% F1-score improvement with transfer learning from green turtle and human datasets, respectively. Transfer learning allows researchers to adapt existing models to their study species, leveraging deep learning and expanding the use of accelerometers for wildlife monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习和跨物种转移自动识别濒危玳瑁的行为。
机载传感器加速度计可以远程监测动物的姿势和运动,使研究人员能够推断动物的行为。尽管深度学习提供了自动分析能力,但数据稀缺仍是生态学面临的一项挑战。我们探索了转移学习,从极度濒危的玳瑁海龟(Eretmochelys imbricata)的加速度数据中对行为进行分类。迁移学习可重复使用在大型数据集中针对一项任务训练的模型来解决相关任务。我们使用在绿海龟(Chelonia mydas)上训练的模型应用了这种方法,并将其调整为识别玳瑁的游泳、休息和进食等行为。我们还将其与根据人类活动数据训练的模型进行了比较。结果显示,通过绿海龟和人类数据集的迁移学习,F1 分数分别提高了 8% 和 4%。迁移学习使研究人员能够根据研究物种调整现有模型,充分利用深度学习并扩大加速度计在野生动物监测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini. WildPose: A long-range 3D wildlife motion capture system. Towards a standard application of the Reynolds number in studies of aquatic animal locomotion. Allatostatin-C signaling in the crab, Carcinus maenas is implicated in the ecdysis programme. Extracellular and intracellular digestion in the bivalves studied by magnetic resonance imaging with a contrast reagent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1