Lucy Chou-Zheng, Olivia Howell, Tori A Boyle, Motaher Hossain, Forrest C Walker, Emma K Sheriff, Barbaros Aslan, Asma Hatoum-Aslan
{"title":"AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases.","authors":"Lucy Chou-Zheng, Olivia Howell, Tori A Boyle, Motaher Hossain, Forrest C Walker, Emma K Sheriff, Barbaros Aslan, Asma Hatoum-Aslan","doi":"10.1093/nar/gkae1006","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly-interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins protect bacteria and archaea from their viruses, and anti-CRISPRs (Acrs) are small virus-encoded proteins that inhibit CRISPR-Cas immunity. Over 80 families of Acrs have been described to date; however, only three of these subvert Type III CRISPR-Cas immunity. Type III systems employ a complex network of Cas and accessory nucleases to degrade viral nucleic acids. Here, we discover and characterize AcrIIIA1, the first Type III-A specific anti-CRISPR protein. We demonstrate that AcrIIIA1 binds to Csm2 within the Cas10-Csm effector complex and attenuates Cas10's DNase activity and second messenger production. Additionally, AcrIIIA1 associates with fragmented t(m)RNAs (acrIIIA1-RNAs), and we show that they co-purify with the Cas10-Csm complex during phage infection. Although the precise role(s) of acrIIIA1-RNAs remain unclear, we found that they bind stably to RNase R, a host-encoded nuclease known to bolster immunity, and RNase R has the capacity to degrade them. Altogether, our results support a model in which AcrIIIA1 and its associated RNAs target both core Cas and accessory nucleases to provide robust protection against Type III CRISPR-Cas immunity.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly-interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins protect bacteria and archaea from their viruses, and anti-CRISPRs (Acrs) are small virus-encoded proteins that inhibit CRISPR-Cas immunity. Over 80 families of Acrs have been described to date; however, only three of these subvert Type III CRISPR-Cas immunity. Type III systems employ a complex network of Cas and accessory nucleases to degrade viral nucleic acids. Here, we discover and characterize AcrIIIA1, the first Type III-A specific anti-CRISPR protein. We demonstrate that AcrIIIA1 binds to Csm2 within the Cas10-Csm effector complex and attenuates Cas10's DNase activity and second messenger production. Additionally, AcrIIIA1 associates with fragmented t(m)RNAs (acrIIIA1-RNAs), and we show that they co-purify with the Cas10-Csm complex during phage infection. Although the precise role(s) of acrIIIA1-RNAs remain unclear, we found that they bind stably to RNase R, a host-encoded nuclease known to bolster immunity, and RNase R has the capacity to degrade them. Altogether, our results support a model in which AcrIIIA1 and its associated RNAs target both core Cas and accessory nucleases to provide robust protection against Type III CRISPR-Cas immunity.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.