Alessa Ruf, Hannah Thieron, Sabrine Nasfi, Bernhard Lederer, Sebastian Fricke, Trusha Adeshara, Johannes Postma, Patrick Blumenkamp, Seomun Kwon, Karina Brinkrolf, Michael Feldbrügge, Alexander Goesmann, Julia Kehr, Jens Steinbrenner, Ena Šečić, Vera Göhre, Arne Weiberg, Karl-Heinz Kogel, Ralph Panstruga, Silke Robatzek
{"title":"Broad-scale phenotyping in Arabidopsis reveals varied involvement of RNA interference across diverse plant-microbe interactions.","authors":"Alessa Ruf, Hannah Thieron, Sabrine Nasfi, Bernhard Lederer, Sebastian Fricke, Trusha Adeshara, Johannes Postma, Patrick Blumenkamp, Seomun Kwon, Karina Brinkrolf, Michael Feldbrügge, Alexander Goesmann, Julia Kehr, Jens Steinbrenner, Ena Šečić, Vera Göhre, Arne Weiberg, Karl-Heinz Kogel, Ralph Panstruga, Silke Robatzek","doi":"10.1002/pld3.70017","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi) is a crucial mechanism in immunity against infectious microbes through the action of DICER-LIKE (DCL) and ARGONAUTE (AGO) proteins. In the case of the taxonomically diverse fungal pathogen <i>Botrytis cinerea</i> and the oomycete <i>Hyaloperonospora arabidopsidis</i>, plant DCL and AGO proteins have proven roles as negative regulators of immunity, suggesting functional specialization of these proteins. To address this aspect in a broader taxonomic context, we characterized the colonization pattern of an informative set of <i>DCL</i> and <i>AGO</i> loss-of-function mutants in <i>Arabidopsis thaliana</i> upon infection with a panel of pathogenic microbes with different lifestyles, and a fungal mutualist. Our results revealed that, depending on the interacting pathogen, AGO1 acts as a positive or negative regulator of immunity, while AGO4 functions as a positive regulator. Additionally, AGO2 and AGO10 positively modulated the colonization by a fungal mutualist. Therefore, analyzing the role of RNAi across a broader range of plant-microbe interactions has identified previously unknown functions for AGO proteins. For some pathogen interactions, however, all tested mutants exhibited wild-type-like infection phenotypes, suggesting that the roles of AGO and DCL proteins in these interactions may be more complex to elucidate.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 11","pages":"e70017"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
RNA interference (RNAi) is a crucial mechanism in immunity against infectious microbes through the action of DICER-LIKE (DCL) and ARGONAUTE (AGO) proteins. In the case of the taxonomically diverse fungal pathogen Botrytis cinerea and the oomycete Hyaloperonospora arabidopsidis, plant DCL and AGO proteins have proven roles as negative regulators of immunity, suggesting functional specialization of these proteins. To address this aspect in a broader taxonomic context, we characterized the colonization pattern of an informative set of DCL and AGO loss-of-function mutants in Arabidopsis thaliana upon infection with a panel of pathogenic microbes with different lifestyles, and a fungal mutualist. Our results revealed that, depending on the interacting pathogen, AGO1 acts as a positive or negative regulator of immunity, while AGO4 functions as a positive regulator. Additionally, AGO2 and AGO10 positively modulated the colonization by a fungal mutualist. Therefore, analyzing the role of RNAi across a broader range of plant-microbe interactions has identified previously unknown functions for AGO proteins. For some pathogen interactions, however, all tested mutants exhibited wild-type-like infection phenotypes, suggesting that the roles of AGO and DCL proteins in these interactions may be more complex to elucidate.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.