Powerful Test of Heterogeneity in Two-Sample Summary-Data Mendelian Randomization.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-11-18 DOI:10.1002/sim.10279
Kai Wang, Steven Y Alberding
{"title":"Powerful Test of Heterogeneity in Two-Sample Summary-Data Mendelian Randomization.","authors":"Kai Wang, Steven Y Alberding","doi":"10.1002/sim.10279","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The success of a Mendelian randomization (MR) study critically depends on the validity of the assumptions underlying MR. We focus on detecting heterogeneity (also known as horizontal pleiotropy) in two-sample summary-data MR. A popular approach is to apply Cochran's <math> <semantics><mrow><mi>Q</mi></mrow> <annotation>$$ Q $$</annotation></semantics> </math> statistic method, developed for meta-analysis. However, Cochran's <math> <semantics><mrow><mi>Q</mi></mrow> <annotation>$$ Q $$</annotation></semantics> </math> statistic, including its modifications, is known to lack power when its degrees of freedom are large. Furthermore, there is no theoretical justification for the claimed null distribution of the minimum of the modified Cochran's <math> <semantics><mrow><mi>Q</mi></mrow> <annotation>$$ Q $$</annotation></semantics> </math> statistic with exact weighting ( <math> <semantics> <mrow> <msub><mrow><mi>Q</mi></mrow> <mrow><mi>min</mi></mrow> </msub> </mrow> <annotation>$$ {Q}_{\\mathrm{min}} $$</annotation></semantics> </math> ), although it seems to perform well in simulation studies.</p><p><strong>Method: </strong>The principle of our proposed method is straightforward: if a set of variables are valid instruments, then any linear combination of these variables is still a valid instrument. Specifically, this principle holds when these linear combinations are formed using eigenvectors derived from a variance matrix. Each linear combination follows a known normal distribution from which a <math> <semantics><mrow><mi>p</mi></mrow> <annotation>$$ p $$</annotation></semantics> </math> value can be calculated. We use the minimum <math> <semantics><mrow><mi>p</mi></mrow> <annotation>$$ p $$</annotation></semantics> </math> value for these eigenvector-based linear combinations as the test statistic. Additionally, we explore a modification of the modified Cochran's <math> <semantics><mrow><mi>Q</mi></mrow> <annotation>$$ Q $$</annotation></semantics> </math> statistic by replacing the weighting matrix with a truncated singular value decomposition.</p><p><strong>Results: </strong>Extensive simulation studies reveal that the proposed methods outperform Cochran's <math> <semantics><mrow><mi>Q</mi></mrow> <annotation>$$ Q $$</annotation></semantics> </math> statistic, including those with modified weights, and MR-PRESSO, another popular method for detecting heterogeneity, in cases where the number of instruments is not large or the Wald ratios take two values. We also demonstrate these methods using empirical examples. Furthermore, we show that <math> <semantics> <mrow> <msub><mrow><mi>Q</mi></mrow> <mrow><mi>min</mi></mrow> </msub> </mrow> <annotation>$$ {Q}_{\\mathrm{min}} $$</annotation></semantics> </math> does not follow, but is dominated by, the claimed null chi-square distribution. The proposed methods are implemented in an R package iGasso.</p><p><strong>Conclusions: </strong>Dimension reduction techniques are useful for generating powerful tests of heterogeneity in MR.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The success of a Mendelian randomization (MR) study critically depends on the validity of the assumptions underlying MR. We focus on detecting heterogeneity (also known as horizontal pleiotropy) in two-sample summary-data MR. A popular approach is to apply Cochran's Q $$ Q $$ statistic method, developed for meta-analysis. However, Cochran's Q $$ Q $$ statistic, including its modifications, is known to lack power when its degrees of freedom are large. Furthermore, there is no theoretical justification for the claimed null distribution of the minimum of the modified Cochran's Q $$ Q $$ statistic with exact weighting ( Q min $$ {Q}_{\mathrm{min}} $$ ), although it seems to perform well in simulation studies.

Method: The principle of our proposed method is straightforward: if a set of variables are valid instruments, then any linear combination of these variables is still a valid instrument. Specifically, this principle holds when these linear combinations are formed using eigenvectors derived from a variance matrix. Each linear combination follows a known normal distribution from which a p $$ p $$ value can be calculated. We use the minimum p $$ p $$ value for these eigenvector-based linear combinations as the test statistic. Additionally, we explore a modification of the modified Cochran's Q $$ Q $$ statistic by replacing the weighting matrix with a truncated singular value decomposition.

Results: Extensive simulation studies reveal that the proposed methods outperform Cochran's Q $$ Q $$ statistic, including those with modified weights, and MR-PRESSO, another popular method for detecting heterogeneity, in cases where the number of instruments is not large or the Wald ratios take two values. We also demonstrate these methods using empirical examples. Furthermore, we show that Q min $$ {Q}_{\mathrm{min}} $$ does not follow, but is dominated by, the claimed null chi-square distribution. The proposed methods are implemented in an R package iGasso.

Conclusions: Dimension reduction techniques are useful for generating powerful tests of heterogeneity in MR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双样本汇总数据孟德尔随机化中的异质性强力测试
背景:孟德尔随机化(Mendelian randomization,MR)研究的成功与否很大程度上取决于 MR 假设的有效性。我们的重点是检测双样本汇总数据 MR 中的异质性(也称为水平多效性)。一种流行的方法是应用为荟萃分析开发的 Cochran's Q $$ Q $$ 统计方法。然而,众所周知,当自由度较大时,Cochran 的 Q $$ Q $$ 统计法(包括其修改版)缺乏力量。此外,虽然在模拟研究中,修正的科克伦 Q $ Q $ 统计量的精确加权(Q min $$ {Q}_\{mathrm{min}} $$)最小值的无效分布似乎表现良好,但并没有理论依据:我们提出的方法原理简单明了:如果一组变量是有效的工具,那么这些变量的任何线性组合仍然是有效的工具。具体来说,当这些线性组合是利用方差矩阵中的特征向量构成时,这一原则就成立了。每个线性组合都遵循已知的正态分布,从中可以计算出 p $$ p $$ 值。我们使用这些基于特征向量的线性组合的最小 p $ p $ 值作为检验统计量。此外,我们还通过用截断奇异值分解代替加权矩阵,对修正的 Cochran Q $$ Q $$ 统计量进行了改进:广泛的模拟研究表明,在工具数量不多或 Wald 比率取两个值的情况下,所提出的方法优于 Cochran Q $$ Q $$ 统计法(包括修改过权重的方法)和另一种流行的异质性检测方法 MR-PRESSO。我们还利用经验实例演示了这些方法。此外,我们还证明了 Q min $$ {Q}_{mathrm{min}}$$ 并不遵循所声称的空驰方分布,而是受其支配。提出的方法在 R 软件包 iGasso 中实现:降维技术有助于对 MR 中的异质性进行强有力的检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
A Novel Bayesian Spatio-Temporal Surveillance Metric to Predict Emerging Infectious Disease Areas of High Disease Risk. Does Remdesivir Lower COVID-19 Mortality? A Subgroup Analysis of Hospitalized Adults Receiving Supplemental Oxygen. Modeling Chronic Disease Mortality by Methods From Accelerated Life Testing. A Nonparametric Global Win Probability Approach to the Analysis and Sizing of Randomized Controlled Trials With Multiple Endpoints of Different Scales and Missing Data: Beyond O'Brien-Wei-Lachin. Causal Inference for Continuous Multiple Time Point Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1