mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae155
Julia Wrobel, Alex C Soupir, Mitchell T Hayes, Lauren C Peres, Thao Vu, Andrew Leroux, Brooke L Fridley
{"title":"mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data.","authors":"Julia Wrobel, Alex C Soupir, Mitchell T Hayes, Lauren C Peres, Thao Vu, Andrew Leroux, Brooke L Fridley","doi":"10.1093/bioadv/vbae155","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Technologies that produce spatial single-cell (SC) data have revolutionized the study of tissue microstructures and promise to advance personalized treatment of cancer by revealing new insights about the tumor microenvironment. Functional data analysis (FDA) is an ideal analytic framework for connecting cell spatial relationships to patient outcomes, but can be challenging to implement. To address this need, we present mxfda, an R package for end-to-end analysis of SC spatial data using FDA. mxfda implements a suite of methods to facilitate spatial analysis of SC imaging data using FDA techniques.</p><p><strong>Availability and implementation: </strong>The mxfda R package is freely available at https://cran.r-project.org/package=mxfda and has detailed documentation, including four vignettes, available at http://juliawrobel.com/mxfda/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae155"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Technologies that produce spatial single-cell (SC) data have revolutionized the study of tissue microstructures and promise to advance personalized treatment of cancer by revealing new insights about the tumor microenvironment. Functional data analysis (FDA) is an ideal analytic framework for connecting cell spatial relationships to patient outcomes, but can be challenging to implement. To address this need, we present mxfda, an R package for end-to-end analysis of SC spatial data using FDA. mxfda implements a suite of methods to facilitate spatial analysis of SC imaging data using FDA techniques.

Availability and implementation: The mxfda R package is freely available at https://cran.r-project.org/package=mxfda and has detailed documentation, including four vignettes, available at http://juliawrobel.com/mxfda/.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mxfda:用于单细胞空间数据功能数据分析的综合工具包。
摘要:产生空间单细胞(SC)数据的技术彻底改变了对组织微结构的研究,并有望通过揭示肿瘤微环境的新见解推进癌症的个性化治疗。功能数据分析(FDA)是将细胞空间关系与患者预后联系起来的理想分析框架,但实施起来却很困难。为了满足这一需求,我们推出了 mxfda,这是一个使用 FDA 对 SC 空间数据进行端到端分析的 R 软件包。mxfda 实现了一套方法,便于使用 FDA 技术对 SC 成像数据进行空间分析:mxfda R 软件包可从 https://cran.r-project.org/package=mxfda 免费获取,其详细文档(包括四个小节)可从 http://juliawrobel.com/mxfda/ 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. LUKB: preparing local UK Biobank data for analysis. Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics. AAclust: k-optimized clustering for selecting redundancy-reduced sets of amino acid scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1