Jeffrey Inen, Chann Makara Han, David M Farrel, Ganna Bilousova, Igor Kogut
{"title":"CIRCLE-Seq for Interrogation of Off-Target Gene Editing.","authors":"Jeffrey Inen, Chann Makara Han, David M Farrel, Ganna Bilousova, Igor Kogut","doi":"10.3791/67069","DOIUrl":null,"url":null,"abstract":"<p><p>Circularization for In Vitro Reporting of Cleavage Effects by Sequencing (CIRCLE-seq) is a novel technique developed for the impartial identification of unintended cleavage sites of CRISPR-Cas9 through targeted sequencing of CRISPR-Cas9 cleaved DNA. The protocol involves circularizing genomic DNA (gDNA), which is subsequently treated with the Cas9 protein and a guide RNA (gRNA) of interest. Following treatment, the cleaved DNA is purified and prepared as a library for Illumina sequencing. The sequencing process generates paired-end reads, offering comprehensive data on each cleavage site. CIRCLE-seq provides several advantages over other in vitro methods, including minimal sequencing depth requirements, low background, and high enrichment for Cas9-cleaved gDNA. These advantages enhance sensitivity in identifying both intended and unintended cleavage events. This study provides a comprehensive, step-by-step procedure for examining the off-target activity of CRISPR-Cas9 using CIRCLE-seq. As an example, this protocol is validated by mapping genome-wide unintended cleavage sites of CRISPR-Cas9 during the modification of the AAVS1 locus. The entire CIRCLE-seq process can be completed in two weeks, allowing sufficient time for cell growth, DNA purification, library preparation, and Illumina sequencing. The input of sequencing data into the CIRCLE-seq pipeline facilitates streamlined interpretation and analysis of cleavage sites.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67069","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Circularization for In Vitro Reporting of Cleavage Effects by Sequencing (CIRCLE-seq) is a novel technique developed for the impartial identification of unintended cleavage sites of CRISPR-Cas9 through targeted sequencing of CRISPR-Cas9 cleaved DNA. The protocol involves circularizing genomic DNA (gDNA), which is subsequently treated with the Cas9 protein and a guide RNA (gRNA) of interest. Following treatment, the cleaved DNA is purified and prepared as a library for Illumina sequencing. The sequencing process generates paired-end reads, offering comprehensive data on each cleavage site. CIRCLE-seq provides several advantages over other in vitro methods, including minimal sequencing depth requirements, low background, and high enrichment for Cas9-cleaved gDNA. These advantages enhance sensitivity in identifying both intended and unintended cleavage events. This study provides a comprehensive, step-by-step procedure for examining the off-target activity of CRISPR-Cas9 using CIRCLE-seq. As an example, this protocol is validated by mapping genome-wide unintended cleavage sites of CRISPR-Cas9 during the modification of the AAVS1 locus. The entire CIRCLE-seq process can be completed in two weeks, allowing sufficient time for cell growth, DNA purification, library preparation, and Illumina sequencing. The input of sequencing data into the CIRCLE-seq pipeline facilitates streamlined interpretation and analysis of cleavage sites.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.