{"title":"An anatomical artificial bone implant can improve three-dimensional correction accuracy in open-wedge high tibial osteotomy","authors":"Yugo Morita , Shinichi Kuriyama , Yusuke Yamawaki , Shinichiro Nakamura , Kohei Nishitani , Hiromu Ito , Shuichi Matsuda","doi":"10.1016/j.knee.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>An anatomical artificial bone implant inserted into the osteotomy gap might be useful for accurate alignment correction during open-wedge high tibial osteotomy (OWHTO). The aims of this study were to evaluate morphological variation in the osteotomy surface, identify an anatomical implant’s shape, and verify its usefulness for accurate three-dimensional (3D) correction.</div></div><div><h3>Methods</h3><div>Virtual OWHTO was performed with preoperative 3D computed tomography data from 100 knees. The tibial contour in the osteotomy plane was analyzed using principal component analysis to determine implant shape. An anatomical artificial bone implant with a 10° correction angle was made with a synthetic bone substitute. Coronal correction accuracy and changes in posterior tibial slope (PTS) and rotation were evaluated on eight cadaver knees that received the anatomical artificial bone implant and clinically on 85 in vivo knees that received conventional wedge-shaped spacers.</div></div><div><h3>Results</h3><div>The single-shape anatomical artificial bone implant was designed to occupy a posteromedial 30 × 25 mm region and had high contour congruency (mean mismatch, 0.73 mm; mean contact area coverage, 97.5%). Gap opening angle with the anatomical artificial bone implant was precise, avoiding excessive PTS change (mean, 0.6°) and rotational change (mean, 0.5°). In contrast, both PTS and rotational change with conventional spacers increased by a mean of 2.9°.</div></div><div><h3>Conclusions</h3><div>An anatomical artificial bone implant derived from the mean shape of 100 knees had high and consistent contour congruency. The anatomical artificial bone implant inserted with 3D surgical guidance provided accurate gap opening, reducing PTS change to less than 1° during OWHTO.</div></div>","PeriodicalId":56110,"journal":{"name":"Knee","volume":"52 ","pages":"Pages 78-89"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968016024001984","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
An anatomical artificial bone implant inserted into the osteotomy gap might be useful for accurate alignment correction during open-wedge high tibial osteotomy (OWHTO). The aims of this study were to evaluate morphological variation in the osteotomy surface, identify an anatomical implant’s shape, and verify its usefulness for accurate three-dimensional (3D) correction.
Methods
Virtual OWHTO was performed with preoperative 3D computed tomography data from 100 knees. The tibial contour in the osteotomy plane was analyzed using principal component analysis to determine implant shape. An anatomical artificial bone implant with a 10° correction angle was made with a synthetic bone substitute. Coronal correction accuracy and changes in posterior tibial slope (PTS) and rotation were evaluated on eight cadaver knees that received the anatomical artificial bone implant and clinically on 85 in vivo knees that received conventional wedge-shaped spacers.
Results
The single-shape anatomical artificial bone implant was designed to occupy a posteromedial 30 × 25 mm region and had high contour congruency (mean mismatch, 0.73 mm; mean contact area coverage, 97.5%). Gap opening angle with the anatomical artificial bone implant was precise, avoiding excessive PTS change (mean, 0.6°) and rotational change (mean, 0.5°). In contrast, both PTS and rotational change with conventional spacers increased by a mean of 2.9°.
Conclusions
An anatomical artificial bone implant derived from the mean shape of 100 knees had high and consistent contour congruency. The anatomical artificial bone implant inserted with 3D surgical guidance provided accurate gap opening, reducing PTS change to less than 1° during OWHTO.
期刊介绍:
The Knee is an international journal publishing studies on the clinical treatment and fundamental biomechanical characteristics of this joint. The aim of the journal is to provide a vehicle relevant to surgeons, biomedical engineers, imaging specialists, materials scientists, rehabilitation personnel and all those with an interest in the knee.
The topics covered include, but are not limited to:
• Anatomy, physiology, morphology and biochemistry;
• Biomechanical studies;
• Advances in the development of prosthetic, orthotic and augmentation devices;
• Imaging and diagnostic techniques;
• Pathology;
• Trauma;
• Surgery;
• Rehabilitation.