Tea nanoparticles modified halloysite clay coated polyurethane sponge as multifunctional sensors

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL Applied Clay Science Pub Date : 2024-11-08 DOI:10.1016/j.clay.2024.107589
Kairui Tian, Xiangyu Chen, Xinyuan Zhou, Yuqian Xu, Mingxian Liu
{"title":"Tea nanoparticles modified halloysite clay coated polyurethane sponge as multifunctional sensors","authors":"Kairui Tian,&nbsp;Xiangyu Chen,&nbsp;Xinyuan Zhou,&nbsp;Yuqian Xu,&nbsp;Mingxian Liu","doi":"10.1016/j.clay.2024.107589","DOIUrl":null,"url":null,"abstract":"<div><div>Tea, as one of the three major beverages in the world, has antioxidant, anti-cancer, inhibitory inflammation, immune regulation, diabetes prevention, antibacterial and other effects. In this study, black tea and FeCl<sub>3</sub>·6H<sub>2</sub>O were chelated to functionally modify the outer surface of halloysite clay nanotube (Hal). A new nanomaterial with excellent photothermal properties, tea nanoparticles@Hal, was successfully synthesized. Tea nanoparticles@Hal powder can raise to 225.8 °C in 25 s, and the corresponding solution can raise to 50.5 °C in 8 min with a photothermal efficiency of 77.3 %. The tea nanoparticles@Hal was assembled on the polyurethane (PU) sponges by simply soaking to prepare conductive sensor. The flexible sensor shows a fast response time (132.8 ms) and a long service time (400 cycles), which have wide range of applications. The resistance changes with the pressure is in a regular functional relationship, and the sensor can measure the weight of objects with high accuracy. In addition, the sensor can stably monitor various physiological activities of the human body. When finger is bent, the sensor can produce the difference output signals. The prepared tea nanoparticles@Hal/PU sensor has broad prospects in fields such as human-computer interaction and medical detection.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003375","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tea, as one of the three major beverages in the world, has antioxidant, anti-cancer, inhibitory inflammation, immune regulation, diabetes prevention, antibacterial and other effects. In this study, black tea and FeCl3·6H2O were chelated to functionally modify the outer surface of halloysite clay nanotube (Hal). A new nanomaterial with excellent photothermal properties, tea nanoparticles@Hal, was successfully synthesized. Tea nanoparticles@Hal powder can raise to 225.8 °C in 25 s, and the corresponding solution can raise to 50.5 °C in 8 min with a photothermal efficiency of 77.3 %. The tea nanoparticles@Hal was assembled on the polyurethane (PU) sponges by simply soaking to prepare conductive sensor. The flexible sensor shows a fast response time (132.8 ms) and a long service time (400 cycles), which have wide range of applications. The resistance changes with the pressure is in a regular functional relationship, and the sensor can measure the weight of objects with high accuracy. In addition, the sensor can stably monitor various physiological activities of the human body. When finger is bent, the sensor can produce the difference output signals. The prepared tea nanoparticles@Hal/PU sensor has broad prospects in fields such as human-computer interaction and medical detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茶纳米粒子修饰的埃洛石粘土涂层聚氨酯海绵作为多功能传感器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
期刊最新文献
Editorial Board Synthesis of phosphonitrile derivative-modified halloysite flame retardants and their simultaneous enhancement of epoxy resins flame retardancy and mechanical properties Hysteresis at low humidity on vapor sorption isotherm of Ca-montmorillonite: The key role of interlayer cations Cronstedtite: H2 generation and new constraints on its formation conditions Tea nanoparticles modified halloysite clay coated polyurethane sponge as multifunctional sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1