Experiment on UI evaluation using automated test

Kania Katherina , Dany Eka Saputra
{"title":"Experiment on UI evaluation using automated test","authors":"Kania Katherina ,&nbsp;Dany Eka Saputra","doi":"10.1016/j.procs.2024.10.233","DOIUrl":null,"url":null,"abstract":"<div><div>Learnability is one important aspect of user interaction that measures how long a user needs to familiarize themselves with the software. The evaluation method using expert analysis or user questionnaire cannot fully capture the learnability aspect of a software. Automated testing can record the user performance data and provide an objective evaluation of learnability. However, embedding recording code to conduct automated test can be expensive. This work proposes a novel method of automatic testing to evaluate the learnability of an existing software. By using Figma and Maze apps, a replica of evaluated software is made and injected with users’ performance recording module with much ease. The result of the experiment shows that learnability data can be acquired objectively. In the experiment, the user of evaluated software requires an average learning rate of 3 iterations. While the average completion time is around 2.37 seconds per action for trained respondents and 1.86 seconds for untrained respondents.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"245 ","pages":"Pages 100-108"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924030412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learnability is one important aspect of user interaction that measures how long a user needs to familiarize themselves with the software. The evaluation method using expert analysis or user questionnaire cannot fully capture the learnability aspect of a software. Automated testing can record the user performance data and provide an objective evaluation of learnability. However, embedding recording code to conduct automated test can be expensive. This work proposes a novel method of automatic testing to evaluate the learnability of an existing software. By using Figma and Maze apps, a replica of evaluated software is made and injected with users’ performance recording module with much ease. The result of the experiment shows that learnability data can be acquired objectively. In the experiment, the user of evaluated software requires an average learning rate of 3 iterations. While the average completion time is around 2.37 seconds per action for trained respondents and 1.86 seconds for untrained respondents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自动测试进行用户界面评估实验
可学习性是用户交互的一个重要方面,它衡量用户需要多长时间来熟悉软件。使用专家分析或用户问卷的评估方法无法完全反映软件的可学习性。自动测试可以记录用户表现数据,并对可学性进行客观评估。然而,嵌入记录代码进行自动测试的成本可能很高。本作品提出了一种新颖的自动测试方法,用于评估现有软件的可学性。通过使用 Figma 和 Maze 应用程序,制作了一个被评估软件的复制品,并注入了用户表现记录模块。实验结果表明,可学习性数据是可以客观获取的。在实验中,被评估软件的用户平均需要反复学习 3 次。训练有素的受访者每次操作的平均完成时间约为 2.37 秒,而未经训练的受访者每次操作的平均完成时间约为 1.86 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1