Estimation of long time-series fine-grained asset wealth in Africa using publicly available remote sensing imagery

Mengjie Wang, Xi Li
{"title":"Estimation of long time-series fine-grained asset wealth in Africa using publicly available remote sensing imagery","authors":"Mengjie Wang,&nbsp;Xi Li","doi":"10.1016/j.jag.2024.104269","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional methods for measuring asset wealth face limitations due to data scarcity, making it challenging to apply them on a large scale and over long periods with fine granularity. Publicly available satellite images, such as nighttime light imagery, have become an important alternative data source for estimating asset wealth. This study thoroughly exploited the spatial neighborhood information of nighttime light, combined with other remote sensing features and the cross-national, temporally comparable International Wealth Index (IWI), to construct long-term asset wealth estimation models for African countries with and without sample data. Based on these models, it generates asset wealth estimates for African settlements at a 500 m spatial resolution from 2012 to 2022. The R<sup>2</sup> values for the models of countries with and without sample data are 0.85 and 0.76, respectively, with mean absolute errors of 6.08 and 8.35, and root means square errors of 8.52 and 10.81, respectively. Additionally, the accuracy of the temporal variation estimates surpasses previous related studies, achieving an R<sup>2</sup> of 0.60. From 2012 to 2022, the overall IWI increased from 28.80 to 30.80, representing an increase of 0.11 standard deviations. In addition to countries with household survey data, the proposed method can also accurately estimate asset wealth for countries without survey data and effectively track asset wealth changes over time.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"135 ","pages":"Article 104269"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional methods for measuring asset wealth face limitations due to data scarcity, making it challenging to apply them on a large scale and over long periods with fine granularity. Publicly available satellite images, such as nighttime light imagery, have become an important alternative data source for estimating asset wealth. This study thoroughly exploited the spatial neighborhood information of nighttime light, combined with other remote sensing features and the cross-national, temporally comparable International Wealth Index (IWI), to construct long-term asset wealth estimation models for African countries with and without sample data. Based on these models, it generates asset wealth estimates for African settlements at a 500 m spatial resolution from 2012 to 2022. The R2 values for the models of countries with and without sample data are 0.85 and 0.76, respectively, with mean absolute errors of 6.08 and 8.35, and root means square errors of 8.52 and 10.81, respectively. Additionally, the accuracy of the temporal variation estimates surpasses previous related studies, achieving an R2 of 0.60. From 2012 to 2022, the overall IWI increased from 28.80 to 30.80, representing an increase of 0.11 standard deviations. In addition to countries with household survey data, the proposed method can also accurately estimate asset wealth for countries without survey data and effectively track asset wealth changes over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可公开获得的遥感图像估算非洲长时间序列细粒度资产财富
由于数据稀缺,传统的资产财富测量方法面临局限性,因此在大规模、长时间、细粒度地应用这些方法具有挑战性。可公开获取的卫星图像(如夜间灯光图像)已成为估算资产财富的重要替代数据源。本研究充分利用夜间光线的空间邻域信息,结合其他遥感特征和跨国、时间可比的国际财富指数(IWI),为有样本数据和无样本数据的非洲国家构建长期资产财富估算模型。在这些模型的基础上,以 500 米的空间分辨率生成了 2012 年至 2022 年非洲住区的资产财富估算值。有样本数据和无样本数据国家模型的 R2 值分别为 0.85 和 0.76,平均绝对误差分别为 6.08 和 8.35,均方根误差分别为 8.52 和 10.81。此外,时间变化估计的准确性也超过了之前的相关研究,R2 达到 0.60。从 2012 年到 2022 年,总体 IWI 从 28.80 上升到 30.80,增加了 0.11 个标准差。除有住户调查数据的国家外,拟议方法还能准确估算无调查数据国家的资产财富,并有效跟踪资产财富随时间的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models An intercomparison of national and global land use and land cover products for Fiji The illusion of success: Test set disproportion causes inflated accuracy in remote sensing mapping research Multispectral imaging and terrestrial laser scanning for the detection of drought-induced paraheliotropic leaf movement in soybean DeLA: An extremely faster network with decoupled local aggregation for large scale point cloud learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1