Joint Intra-view and Inter-view Enhanced Tensor Low-rank Induced Affinity Graph Learning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-04 DOI:10.1016/j.patcog.2024.111140
Weijun Sun, Chaoye Li, Qiaoyun Li, Xiaozhao Fang, Jiakai He, Lei Liu
{"title":"Joint Intra-view and Inter-view Enhanced Tensor Low-rank Induced Affinity Graph Learning","authors":"Weijun Sun,&nbsp;Chaoye Li,&nbsp;Qiaoyun Li,&nbsp;Xiaozhao Fang,&nbsp;Jiakai He,&nbsp;Lei Liu","doi":"10.1016/j.patcog.2024.111140","DOIUrl":null,"url":null,"abstract":"<div><div>Graph-based and tensor-based multi-view clustering have gained popularity in recent years due to their ability to explore the relationship between samples. However, there are still several shortcomings in the current multi-view graph clustering algorithms. (1) Most previous methods only focus on the inter-view correlation, while ignoring the intra-view correlation. (2) They usually use the Tensor Nuclear Norm (TNN) to approximate the rank of tensors. However, while it has the same penalty for different singular values, the model cannot approximate the true rank of tensors well. To solve these problems in a unified way, we propose a new tensor-based multi-view graph clustering method. Specifically, we introduce the Enhanced Tensor Rank (ETR) minimization of intra-view and inter-view in the process of learning the affinity graph of each view. Compared with 10 state-of-the-art methods on 8 real datasets, the experimental results demonstrate the superiority of our method.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111140"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008914","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph-based and tensor-based multi-view clustering have gained popularity in recent years due to their ability to explore the relationship between samples. However, there are still several shortcomings in the current multi-view graph clustering algorithms. (1) Most previous methods only focus on the inter-view correlation, while ignoring the intra-view correlation. (2) They usually use the Tensor Nuclear Norm (TNN) to approximate the rank of tensors. However, while it has the same penalty for different singular values, the model cannot approximate the true rank of tensors well. To solve these problems in a unified way, we propose a new tensor-based multi-view graph clustering method. Specifically, we introduce the Enhanced Tensor Rank (ETR) minimization of intra-view and inter-view in the process of learning the affinity graph of each view. Compared with 10 state-of-the-art methods on 8 real datasets, the experimental results demonstrate the superiority of our method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合视图内和视图间增强型张量低秩诱导亲和图学习
近年来,基于图形和张量的多视图聚类因其能够探索样本之间的关系而广受欢迎。然而,目前的多视图聚类算法仍存在一些不足。(1) 以往的方法大多只关注视图间的相关性,而忽略了视图内的相关性。(2) 它们通常使用张量核规范(TNN)来逼近张量的秩。然而,虽然它对不同奇异值的惩罚相同,但该模型不能很好地逼近张量的真实秩。为了统一解决这些问题,我们提出了一种新的基于张量的多视图聚类方法。具体来说,我们在学习每个视图的亲和图的过程中引入了视图内和视图间的增强张量秩(ETR)最小化。在 8 个真实数据集上与 10 种最先进的方法相比,实验结果证明了我们的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Learning accurate and enriched features for stereo image super-resolution Semi-supervised multi-view feature selection with adaptive similarity fusion and learning DyConfidMatch: Dynamic thresholding and re-sampling for 3D semi-supervised learning CAST: An innovative framework for Cross-dimensional Attention Structure in Transformers Embedded feature selection for robust probability learning machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1