EGO-LM: An efficient, generic, and out-of-the-box language model for handwritten text recognition

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-04 DOI:10.1016/j.patcog.2024.111130
Hongliang Li , Dezhi Peng , Lianwen Jin
{"title":"EGO-LM: An efficient, generic, and out-of-the-box language model for handwritten text recognition","authors":"Hongliang Li ,&nbsp;Dezhi Peng ,&nbsp;Lianwen Jin","doi":"10.1016/j.patcog.2024.111130","DOIUrl":null,"url":null,"abstract":"<div><div>The language model (LM) plays a crucial role in post-processing handwritten text recognition (HTR) by capturing linguistic patterns. However, traditional rule-based LMs are inefficient, and recent end-to-end LMs require customized training for each HTR model. To address these limitations, we propose an <strong>E</strong>fficient, <strong>G</strong>eneric, and <strong>O</strong>ut-of-the-box <strong>L</strong>anguage <strong>M</strong>odel (EGO-LM) for HTR. To unlock the out-of-the-box capability of the end-to-end LM, we introduce a vision-limited proxy task that focuses on visual-pattern-agnostic linguistic dependencies during training, enhancing the robustness and generality of the LM. The enhanced capabilities also enable EGO-LM to iteratively refine its output for a further accuracy boost without additional tuning. Moreover, we introduce a <strong>D</strong>iverse-<strong>C</strong>orpus <strong>O</strong>nline <strong>H</strong>andwriting dataset (DCOH-120K) with more diverse corpus types and more samples than existing datasets, including 83,142 Chinese and 39,398 English text lines. Extensive experiments demonstrate that EGO-LM can attain state-of-the-art performance while achieving up to 613<span><math><mo>×</mo></math></span> acceleration. The DCOH-120K dataset is available at .</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111130"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008811","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The language model (LM) plays a crucial role in post-processing handwritten text recognition (HTR) by capturing linguistic patterns. However, traditional rule-based LMs are inefficient, and recent end-to-end LMs require customized training for each HTR model. To address these limitations, we propose an Efficient, Generic, and Out-of-the-box Language Model (EGO-LM) for HTR. To unlock the out-of-the-box capability of the end-to-end LM, we introduce a vision-limited proxy task that focuses on visual-pattern-agnostic linguistic dependencies during training, enhancing the robustness and generality of the LM. The enhanced capabilities also enable EGO-LM to iteratively refine its output for a further accuracy boost without additional tuning. Moreover, we introduce a Diverse-Corpus Online Handwriting dataset (DCOH-120K) with more diverse corpus types and more samples than existing datasets, including 83,142 Chinese and 39,398 English text lines. Extensive experiments demonstrate that EGO-LM can attain state-of-the-art performance while achieving up to 613× acceleration. The DCOH-120K dataset is available at .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EGO-LM:高效、通用、开箱即用的手写文本识别语言模型
语言模型(LM)通过捕捉语言模式,在手写文本识别(HTR)的后处理中发挥着至关重要的作用。然而,传统的基于规则的语言模型效率低下,而最新的端到端语言模型需要对每个 HTR 模型进行定制化训练。为了解决这些局限性,我们提出了一种适用于 HTR 的高效、通用和开箱即用的语言模型(EGO-LM)。为了释放端到端 LM 的开箱即用能力,我们引入了一个视觉限制代理任务,该任务在训练过程中重点关注与视觉模式无关的语言依赖关系,从而增强了 LM 的鲁棒性和通用性。增强的功能还使 EGO-LM 能够迭代改进其输出,从而进一步提高准确性,而无需额外的调整。此外,我们还引入了多元化语料库在线手写数据集(DCOH-120K),与现有数据集相比,该数据集的语料类型更加多元化,样本数量也更多,包括 83,142 个中文文本行和 39,398 个英文文本行。广泛的实验证明,EGO-LM 可以达到最先进的性能,同时实现高达 613 倍的加速度。DCOH-120K数据集可在.NET.CN上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Learning accurate and enriched features for stereo image super-resolution Semi-supervised multi-view feature selection with adaptive similarity fusion and learning DyConfidMatch: Dynamic thresholding and re-sampling for 3D semi-supervised learning CAST: An innovative framework for Cross-dimensional Attention Structure in Transformers Embedded feature selection for robust probability learning machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1