Lijian Yang , Jianxun Mi , Weisheng Li , Guofen Wang , Bin Xiao
{"title":"Improving the sparse coding model via hybrid Gaussian priors","authors":"Lijian Yang , Jianxun Mi , Weisheng Li , Guofen Wang , Bin Xiao","doi":"10.1016/j.patcog.2024.111102","DOIUrl":null,"url":null,"abstract":"<div><div>Sparse Coding (SC) imposes a sparse prior on the representation coefficients under a dictionary or a sensing matrix. However, the sparse regularization, approximately expressed as the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm, is not strongly convex. The uniqueness of the optimal solution requires the dictionary to be of low mutual coherence. As a specialized form of SC, Convolutional Sparse Coding (CSC) encounters the same issue. Inspired by the Elastic Net, this paper proposes to learn an additional anisotropic Gaussian prior for the sparse codes, thus improving the convexity of the SC problem and enabling the modeling of feature correlation. As a result, the SC problem is modified by the proposed elastic projection. We thereby analyze the effectiveness of the proposed method under the framework of LISTA and demonstrate that this simple technique has the potential to correct bad codes and reduce the error bound, especially in noisy scenarios. Furthermore, we extend this technique to the CSC model for the vision practice of image denoising. Extensive experimental results show that the learned Gaussian prior significantly improves the performance of both the SC and CSC models. Source codes are available at <span><span>https://github.com/eeejyang/EPCSCNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111102"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008537","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse Coding (SC) imposes a sparse prior on the representation coefficients under a dictionary or a sensing matrix. However, the sparse regularization, approximately expressed as the -norm, is not strongly convex. The uniqueness of the optimal solution requires the dictionary to be of low mutual coherence. As a specialized form of SC, Convolutional Sparse Coding (CSC) encounters the same issue. Inspired by the Elastic Net, this paper proposes to learn an additional anisotropic Gaussian prior for the sparse codes, thus improving the convexity of the SC problem and enabling the modeling of feature correlation. As a result, the SC problem is modified by the proposed elastic projection. We thereby analyze the effectiveness of the proposed method under the framework of LISTA and demonstrate that this simple technique has the potential to correct bad codes and reduce the error bound, especially in noisy scenarios. Furthermore, we extend this technique to the CSC model for the vision practice of image denoising. Extensive experimental results show that the learned Gaussian prior significantly improves the performance of both the SC and CSC models. Source codes are available at https://github.com/eeejyang/EPCSCNet.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.