Control accuracy and sensitivity of a double rhombic-strut adaptive beam string structure

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Constructional Steel Research Pub Date : 2024-11-15 DOI:10.1016/j.jcsr.2024.109166
Jun Zou , Jinyu Lu , Na Li , Haichen Zhang , Zhicheng Sha , Zhiyin Xu
{"title":"Control accuracy and sensitivity of a double rhombic-strut adaptive beam string structure","authors":"Jun Zou ,&nbsp;Jinyu Lu ,&nbsp;Na Li ,&nbsp;Haichen Zhang ,&nbsp;Zhicheng Sha ,&nbsp;Zhiyin Xu","doi":"10.1016/j.jcsr.2024.109166","DOIUrl":null,"url":null,"abstract":"<div><div>The control accuracy and sensitivity of active struts in traditional adaptive beam string structures (ABSS) pose significant challenges to meeting the control requirements in different working states, which will seriously limit its adaptability to various external environments. To address this issue, a double rhombic active strut adaptive beam string structure (DRSABSS) was developed. To analyze the working mechanism of the double rhombic active strut and its feasibility in structural active control, its geometric deformation model was established, and the design formula was derived. The experiments and numerical simulations were conducted on a scaled model of the DRSABSS under different load cases. A control strategy that minimizes displacement considering control accuracy and sensitivity was proposed based on a genetic algorithm (GA). The test and simulation results showed that the initial angle of the double rhombic active strut was a crucial factor in determining its control function, and the accuracy of its design formula was verified. Additionally, the structural responses were significantly reduced after active control, and the double rhombic active struts can improve the structural control accuracy and sensitivity simultaneously, and the flexible switching of control modes under different requirements in real-time can be achieved. The test results were in good agreement with the simulation results. The rhombic amplification mechanism of DRSABSS proposed in this paper provides a new approach to improve the control accuracy and sensitivity of adaptive structures, and it can be applicable to the control requirements under different loads.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109166"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007168","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The control accuracy and sensitivity of active struts in traditional adaptive beam string structures (ABSS) pose significant challenges to meeting the control requirements in different working states, which will seriously limit its adaptability to various external environments. To address this issue, a double rhombic active strut adaptive beam string structure (DRSABSS) was developed. To analyze the working mechanism of the double rhombic active strut and its feasibility in structural active control, its geometric deformation model was established, and the design formula was derived. The experiments and numerical simulations were conducted on a scaled model of the DRSABSS under different load cases. A control strategy that minimizes displacement considering control accuracy and sensitivity was proposed based on a genetic algorithm (GA). The test and simulation results showed that the initial angle of the double rhombic active strut was a crucial factor in determining its control function, and the accuracy of its design formula was verified. Additionally, the structural responses were significantly reduced after active control, and the double rhombic active struts can improve the structural control accuracy and sensitivity simultaneously, and the flexible switching of control modes under different requirements in real-time can be achieved. The test results were in good agreement with the simulation results. The rhombic amplification mechanism of DRSABSS proposed in this paper provides a new approach to improve the control accuracy and sensitivity of adaptive structures, and it can be applicable to the control requirements under different loads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双菱形支杆自适应梁弦结构的控制精度和灵敏度
传统自适应梁串结构(ABSS)中的主动支柱的控制精度和灵敏度对满足不同工作状态下的控制要求提出了巨大挑战,这将严重限制其对各种外部环境的适应性。为解决这一问题,我们开发了一种双菱形主动支柱自适应梁串结构(DRSABSS)。为了分析双菱形主动支柱的工作机理及其在结构主动控制中的可行性,建立了其几何变形模型,并推导出设计公式。在不同载荷情况下,对 DRSABSS 的比例模型进行了实验和数值模拟。基于遗传算法(GA),提出了一种兼顾控制精度和灵敏度的位移最小化控制策略。试验和模拟结果表明,双菱形主动支撑的初始角度是决定其控制功能的关键因素,其设计公式的准确性也得到了验证。此外,主动控制后结构响应明显降低,双菱形主动支撑可同时提高结构控制精度和灵敏度,并可实现不同要求下控制模式的实时灵活切换。试验结果与仿真结果吻合良好。本文提出的 DRSABSS 的菱形放大机制为提高自适应结构的控制精度和灵敏度提供了一种新方法,可适用于不同载荷下的控制要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
期刊最新文献
Topology optimization of trusses considering global stability and member buckling Robustness-based assessment and monitoring of steel truss railway bridges to prevent progressive collapse The bond-slip behavior of H-shaped steel embedded in UHPC under reversed cyclic loading Elevated temperature material properties of cold-formed advanced high strength steel channel sections Multi-parameter coupling modeling method and hybrid mechanism of concrete-encased CFST hybrid structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1