Lucas Zanusso Morais , Marcelo Gomes Martins , Rafael Piccin Torchelsen , Anderson Maciel , Luciana Porcher Nedel
{"title":"Fast spline collision detection (FSCD) algorithm for solving multiple contacts in real-time","authors":"Lucas Zanusso Morais , Marcelo Gomes Martins , Rafael Piccin Torchelsen , Anderson Maciel , Luciana Porcher Nedel","doi":"10.1016/j.cag.2024.104107","DOIUrl":null,"url":null,"abstract":"<div><div>Collision detection has been widely studied in the last decades. While plenty of solutions exist, certain simulation scenarios are still challenging when permanent contact and deformable bodies are involved. In this paper, we introduce a novel approach based on volumetric splines that is applicable to complex deformable tubes, such as in the simulation of colonoscopy and other endoscopies. The method relies on modeling radial control points, extracting surface information from a triangle mesh, and storing the volume information around a spline path. Such information is later used to compute the intersection between the object surfaces under the assumption of spatial coherence between neighboring splines. We analyze the method’s performance in terms of both speed and accuracy, comparing it with previous works. Results show that our method solves collisions between complex meshes with over 300k triangles, generating over 1,000 collisions per frame between objects while maintaining an average time of under 1ms without compromising accuracy.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"125 ","pages":"Article 104107"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002425","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Collision detection has been widely studied in the last decades. While plenty of solutions exist, certain simulation scenarios are still challenging when permanent contact and deformable bodies are involved. In this paper, we introduce a novel approach based on volumetric splines that is applicable to complex deformable tubes, such as in the simulation of colonoscopy and other endoscopies. The method relies on modeling radial control points, extracting surface information from a triangle mesh, and storing the volume information around a spline path. Such information is later used to compute the intersection between the object surfaces under the assumption of spatial coherence between neighboring splines. We analyze the method’s performance in terms of both speed and accuracy, comparing it with previous works. Results show that our method solves collisions between complex meshes with over 300k triangles, generating over 1,000 collisions per frame between objects while maintaining an average time of under 1ms without compromising accuracy.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.