Quantitative prediction of hemolytic activity of peptides

IF 3.1 Q2 TOXICOLOGY Computational Toxicology Pub Date : 2024-10-29 DOI:10.1016/j.comtox.2024.100335
Dmitry A. Karasev , Georgii S. Malakhov , Boris N. Sobolev
{"title":"Quantitative prediction of hemolytic activity of peptides","authors":"Dmitry A. Karasev ,&nbsp;Georgii S. Malakhov ,&nbsp;Boris N. Sobolev","doi":"10.1016/j.comtox.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><div>Peptides are currently considered promising therapeutic agents, ranging from antimicrobial to anticancer drugs. Damage to the cell membrane is the most studied mechanism of action of antibacterial peptides. The membrane toxicity of peptides towards human cells is assessed using hemolysis estimation. Several in silico methods have been developed to predict the hemolytic activity of potential antibacterial drugs. Most of the programs use classification models whose results are difficult to interpret. Usually, a researcher does not have the opportunity to understand under what conditions the prediction results can be realized. Furthermore, the authors often use the same external data as training ones not considering the principles of dividing the active and non-active subjects despite that underlying results were obtained under differed conditions. To overcome the gap between the prognosis and real study, we developed the regression models involving the details of differed experimental protocols. We reviewed the literature and supplemented the training data for 951 peptides with quantitative descriptors of the experimental conditions. The resulting regression models predicted the peptide concentration that would cause a certain level of hemolysis at a certain incubation time. Under different validation schemes, our models achieved acceptable performance estimates of 0.69 for R<sup>2</sup> and 58 µM for RMSE. Having evaluated the impact of descriptors on model performance, we confirmed the importance of accounting for the experimental conditions for reliable prediction of the peptide membrane toxicity.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"32 ","pages":"Article 100335"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptides are currently considered promising therapeutic agents, ranging from antimicrobial to anticancer drugs. Damage to the cell membrane is the most studied mechanism of action of antibacterial peptides. The membrane toxicity of peptides towards human cells is assessed using hemolysis estimation. Several in silico methods have been developed to predict the hemolytic activity of potential antibacterial drugs. Most of the programs use classification models whose results are difficult to interpret. Usually, a researcher does not have the opportunity to understand under what conditions the prediction results can be realized. Furthermore, the authors often use the same external data as training ones not considering the principles of dividing the active and non-active subjects despite that underlying results were obtained under differed conditions. To overcome the gap between the prognosis and real study, we developed the regression models involving the details of differed experimental protocols. We reviewed the literature and supplemented the training data for 951 peptides with quantitative descriptors of the experimental conditions. The resulting regression models predicted the peptide concentration that would cause a certain level of hemolysis at a certain incubation time. Under different validation schemes, our models achieved acceptable performance estimates of 0.69 for R2 and 58 µM for RMSE. Having evaluated the impact of descriptors on model performance, we confirmed the importance of accounting for the experimental conditions for reliable prediction of the peptide membrane toxicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多肽溶血活性的定量预测
肽类药物目前被认为是很有前途的治疗药物,包括抗菌药和抗癌药。对细胞膜的破坏是研究最多的抗菌肽作用机制。多肽对人体细胞的膜毒性是通过溶血估计来评估的。目前已开发出几种硅学方法来预测潜在抗菌药物的溶血活性。大多数程序使用分类模型,其结果难以解释。通常,研究人员没有机会了解在什么条件下可以实现预测结果。此外,尽管基本结果是在不同条件下获得的,但作者往往使用相同的外部数据作为训练数据,而不考虑划分活动和非活动受试者的原则。为了克服预测与实际研究之间的差距,我们开发了涉及不同实验方案细节的回归模型。我们查阅了文献,并用实验条件的定量描述符补充了 951 种肽的训练数据。由此建立的回归模型预测了在一定培养时间内会导致一定程度溶血的肽浓度。在不同的验证方案下,我们的模型达到了可接受的性能估计值:R2 为 0.69,RMSE 为 58 µM。在评估了描述因子对模型性能的影响后,我们确认了实验条件对可靠预测多肽膜毒性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
期刊最新文献
Reconstruction of exposure to volatile organic compounds from venous blood concentration and an uncertain physiologically-based pharmacokinetic model Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework Quantitative prediction of hemolytic activity of peptides Species specific kinetics of imidacloprid and carbendazim in mouse and rat and consequences for biomonitoring In silico analysis of the melamine structural analogues interaction with calcium-sensing receptor: A potential for nephrotoxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1