Dmitry A. Karasev , Georgii S. Malakhov , Boris N. Sobolev
{"title":"Quantitative prediction of hemolytic activity of peptides","authors":"Dmitry A. Karasev , Georgii S. Malakhov , Boris N. Sobolev","doi":"10.1016/j.comtox.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><div>Peptides are currently considered promising therapeutic agents, ranging from antimicrobial to anticancer drugs. Damage to the cell membrane is the most studied mechanism of action of antibacterial peptides. The membrane toxicity of peptides towards human cells is assessed using hemolysis estimation. Several in silico methods have been developed to predict the hemolytic activity of potential antibacterial drugs. Most of the programs use classification models whose results are difficult to interpret. Usually, a researcher does not have the opportunity to understand under what conditions the prediction results can be realized. Furthermore, the authors often use the same external data as training ones not considering the principles of dividing the active and non-active subjects despite that underlying results were obtained under differed conditions. To overcome the gap between the prognosis and real study, we developed the regression models involving the details of differed experimental protocols. We reviewed the literature and supplemented the training data for 951 peptides with quantitative descriptors of the experimental conditions. The resulting regression models predicted the peptide concentration that would cause a certain level of hemolysis at a certain incubation time. Under different validation schemes, our models achieved acceptable performance estimates of 0.69 for R<sup>2</sup> and 58 µM for RMSE. Having evaluated the impact of descriptors on model performance, we confirmed the importance of accounting for the experimental conditions for reliable prediction of the peptide membrane toxicity.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"32 ","pages":"Article 100335"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peptides are currently considered promising therapeutic agents, ranging from antimicrobial to anticancer drugs. Damage to the cell membrane is the most studied mechanism of action of antibacterial peptides. The membrane toxicity of peptides towards human cells is assessed using hemolysis estimation. Several in silico methods have been developed to predict the hemolytic activity of potential antibacterial drugs. Most of the programs use classification models whose results are difficult to interpret. Usually, a researcher does not have the opportunity to understand under what conditions the prediction results can be realized. Furthermore, the authors often use the same external data as training ones not considering the principles of dividing the active and non-active subjects despite that underlying results were obtained under differed conditions. To overcome the gap between the prognosis and real study, we developed the regression models involving the details of differed experimental protocols. We reviewed the literature and supplemented the training data for 951 peptides with quantitative descriptors of the experimental conditions. The resulting regression models predicted the peptide concentration that would cause a certain level of hemolysis at a certain incubation time. Under different validation schemes, our models achieved acceptable performance estimates of 0.69 for R2 and 58 µM for RMSE. Having evaluated the impact of descriptors on model performance, we confirmed the importance of accounting for the experimental conditions for reliable prediction of the peptide membrane toxicity.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs