Virtual sample generation for small sample learning: A survey, recent developments and future prospects

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-15 DOI:10.1016/j.neucom.2024.128934
Jianming Wen , Ao Su , Xiaolin Wang , Hao Xu , Jijie Ma , Kang Chen , Xinyang Ge , Zisheng Xu , Zhong Lv
{"title":"Virtual sample generation for small sample learning: A survey, recent developments and future prospects","authors":"Jianming Wen ,&nbsp;Ao Su ,&nbsp;Xiaolin Wang ,&nbsp;Hao Xu ,&nbsp;Jijie Ma ,&nbsp;Kang Chen ,&nbsp;Xinyang Ge ,&nbsp;Zisheng Xu ,&nbsp;Zhong Lv","doi":"10.1016/j.neucom.2024.128934","DOIUrl":null,"url":null,"abstract":"<div><div>Virtual sample generation (VSG) technology aims to generate virtual samples based on real samples, in order to expand the size of the datasets and improve model performance. However, there is limited research summarizing VSG technology, which motivates this paper. In recent years, VSG technology has grown as a crucial tool for augmenting datasets and enhancing model performance, particularly in the fields like image recognition, medicine, and quality control where small datasets are common issues. This paper aims to provide an updated review of VSG technology, focusing on three key techniques which are important for small sample analysis studies, including sampling-based, information diffusion-based, and Generative Adversarial Networks (GANs)-based technology. In this review, we seek to identify the key trends in this field and to provide insights regarding the opportunities and challenges.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128934"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017053","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual sample generation (VSG) technology aims to generate virtual samples based on real samples, in order to expand the size of the datasets and improve model performance. However, there is limited research summarizing VSG technology, which motivates this paper. In recent years, VSG technology has grown as a crucial tool for augmenting datasets and enhancing model performance, particularly in the fields like image recognition, medicine, and quality control where small datasets are common issues. This paper aims to provide an updated review of VSG technology, focusing on three key techniques which are important for small sample analysis studies, including sampling-based, information diffusion-based, and Generative Adversarial Networks (GANs)-based technology. In this review, we seek to identify the key trends in this field and to provide insights regarding the opportunities and challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于小样本学习的虚拟样本生成:调查、最新进展和未来展望
虚拟样本生成(VSG)技术旨在根据真实样本生成虚拟样本,从而扩大数据集的规模并提高模型性能。然而,目前对 VSG 技术的研究总结还很有限,这也是本文的研究动机。近年来,VSG 技术已发展成为增强数据集和提高模型性能的重要工具,尤其是在图像识别、医学和质量控制等领域,小数据集是常见问题。本文旨在提供有关 VSG 技术的最新综述,重点关注对小样本分析研究非常重要的三种关键技术,包括基于采样的技术、基于信息扩散的技术和基于生成对抗网络(GANs)的技术。在本综述中,我们力求确定该领域的主要趋势,并就机遇和挑战提出见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1