Yanzhen Xiong , Jinjia Peng , Zeze Tao , Huibing Wang
{"title":"Region-guided spatial feature aggregation network for vehicle re-identification","authors":"Yanzhen Xiong , Jinjia Peng , Zeze Tao , Huibing Wang","doi":"10.1016/j.engappai.2024.109568","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of the advancement of smart city management, re-identification technology has emerged as an area of particular interest and research in the field of artificial intelligence, especially vehicle re-identification (re-ID), which aims to identify target vehicles in multiple non-overlapping fields of view. Most existing methods rely on fine-grained cues in the salient regions. Although impressive results have been achieved, these methods typically require additional auxiliary networks to localize the salient regions containing fine-grained cues. Meanwhile, changes in state such as illumination, viewpoint and occlusion can affect the position of the salient regions. To solve the above problems, this paper proposes a Region-guided Spatial Feature Aggregation Network (RSFAN) for vehicle re-ID, which forces the model to learn the latent information in the minor salient regions. Firstly, a Regional Localization (RL) module is proposed to automatically locate the salient regions without additional auxiliary networks. In addition, to mitigate the misguidance caused by the inaccurate salient regions, a Spatial Feature Aggregation (SFA) module is designed to weaken and enhance the expression of the salient and minor salient regions, respectively. Meanwhile, to enhance the diversity of the minor salient region-related information, a Cross-level Channel Attention (CCA) module is designed to implement cross-level interactions through the channel attention mechanism across different levels. Finally, to constrain the distributional differences between the salient regions and minor salient regions feature, a Distributional Variance (DV) loss is proposed. The extensive experiments show that the RSFAN has a good performance on VeRi-776, VehicleID, VeRi-Wild and Market1501 datasets.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109568"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017263","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of the advancement of smart city management, re-identification technology has emerged as an area of particular interest and research in the field of artificial intelligence, especially vehicle re-identification (re-ID), which aims to identify target vehicles in multiple non-overlapping fields of view. Most existing methods rely on fine-grained cues in the salient regions. Although impressive results have been achieved, these methods typically require additional auxiliary networks to localize the salient regions containing fine-grained cues. Meanwhile, changes in state such as illumination, viewpoint and occlusion can affect the position of the salient regions. To solve the above problems, this paper proposes a Region-guided Spatial Feature Aggregation Network (RSFAN) for vehicle re-ID, which forces the model to learn the latent information in the minor salient regions. Firstly, a Regional Localization (RL) module is proposed to automatically locate the salient regions without additional auxiliary networks. In addition, to mitigate the misguidance caused by the inaccurate salient regions, a Spatial Feature Aggregation (SFA) module is designed to weaken and enhance the expression of the salient and minor salient regions, respectively. Meanwhile, to enhance the diversity of the minor salient region-related information, a Cross-level Channel Attention (CCA) module is designed to implement cross-level interactions through the channel attention mechanism across different levels. Finally, to constrain the distributional differences between the salient regions and minor salient regions feature, a Distributional Variance (DV) loss is proposed. The extensive experiments show that the RSFAN has a good performance on VeRi-776, VehicleID, VeRi-Wild and Market1501 datasets.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.