Jingyu Ge , Jiuling Li , Ruihong Qiu , Tao Shi , Zi Huang , Yanchen Liu , Zhiguo Yuan
{"title":"Identifying periods impacted by sewer inflow and infiltration using time series anomaly detection","authors":"Jingyu Ge , Jiuling Li , Ruihong Qiu , Tao Shi , Zi Huang , Yanchen Liu , Zhiguo Yuan","doi":"10.1016/j.wroa.2024.100278","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate diagnosis of sewer inflow and infiltration (I/I) is crucial for ensuring the safe transportation of sewage and the stability of wastewater treatment processes. Identifying periods impacted by I/I is essential for I/I diagnosis, but current methods lack a standard criterion and require adaptation to specific conditions, resulting in low accuracy, complexity, and limited generalizability. This paper proposes a novel approach to distinguish I/I periods from time series of sewer measurements based on anomaly detection theory through an iterative use of a time-series reconstruction model. This method eliminates the need for external data such as rainfalls and avoids intensive manual data analysis. Operating directly on in-sewer data, it enhances accuracy compared to existing approaches and is applicable to various external factors such as rainfall, snowmelt, and seawater intrusion. The method can be applicable to a broad range of monitoring data, including flow rate, temperature, and conductivity. Validated through simulation studies and demonstrated via real-life applications, this method offers an efficient solution for I/I detection, facilitating further I/I diagnosis, including I/I quantification and location identification.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100278"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000689","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate diagnosis of sewer inflow and infiltration (I/I) is crucial for ensuring the safe transportation of sewage and the stability of wastewater treatment processes. Identifying periods impacted by I/I is essential for I/I diagnosis, but current methods lack a standard criterion and require adaptation to specific conditions, resulting in low accuracy, complexity, and limited generalizability. This paper proposes a novel approach to distinguish I/I periods from time series of sewer measurements based on anomaly detection theory through an iterative use of a time-series reconstruction model. This method eliminates the need for external data such as rainfalls and avoids intensive manual data analysis. Operating directly on in-sewer data, it enhances accuracy compared to existing approaches and is applicable to various external factors such as rainfall, snowmelt, and seawater intrusion. The method can be applicable to a broad range of monitoring data, including flow rate, temperature, and conductivity. Validated through simulation studies and demonstrated via real-life applications, this method offers an efficient solution for I/I detection, facilitating further I/I diagnosis, including I/I quantification and location identification.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.