A deep learning-based comprehensive robotic system for lower limb rehabilitation

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biomedical Signal Processing and Control Pub Date : 2024-11-06 DOI:10.1016/j.bspc.2024.107178
Prithwijit Mukherjee, Anisha Halder Roy
{"title":"A deep learning-based comprehensive robotic system for lower limb rehabilitation","authors":"Prithwijit Mukherjee,&nbsp;Anisha Halder Roy","doi":"10.1016/j.bspc.2024.107178","DOIUrl":null,"url":null,"abstract":"<div><div>In the modern era, a significant percentage of people around the world suffer from knee pain-related problems. ‘Knee pain’ can be alleviated by performing knee rehabilitation exercises in the correct posture on a regular basis. In our research, an attention mechanism-based CNN-TLSTM (Convolution Neural Network-tanh Long Sort-Term Memory) network has been proposed for assessing the knee pain level of a person. Here, electroencephalogram (EEG) signals of the frontal, parietal, and temporal lobes, electromyography (EMG) signals of the hamstring and quadriceps muscles, and knee bending angle have been used for knee pain detection. First, the CNN network has been utilized for automated feature extraction from the EEG, knee bending angle, and EMG data, and subsequently, the TLSTM network has been used as a classifier. The trained CNN-TLSTM model can classify the knee pain level of a person into five categories, namely no pain, low pain, medium pain, moderate pain, and high pain, with an overall accuracy of 95.88 %. In the hardware part, a prototype of an automated robotic knee rehabilitation system has been designed to help a person perform three rehabilitation exercises, i.e., sitting knee bending, straight leg rise, and active knee bending, according to his/her pain level, without the presence of any physiotherapist. The novelty of our research lies in (i) designing a novel deep learning-based classifier model for broadly classifying knee pain into five categories, (ii) introducing attention mechanism into the TLSTM network to boost its classification performance, and (iii) developing a user-friendly rehabilitation device for knee rehabilitation.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"100 ","pages":"Article 107178"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424012369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the modern era, a significant percentage of people around the world suffer from knee pain-related problems. ‘Knee pain’ can be alleviated by performing knee rehabilitation exercises in the correct posture on a regular basis. In our research, an attention mechanism-based CNN-TLSTM (Convolution Neural Network-tanh Long Sort-Term Memory) network has been proposed for assessing the knee pain level of a person. Here, electroencephalogram (EEG) signals of the frontal, parietal, and temporal lobes, electromyography (EMG) signals of the hamstring and quadriceps muscles, and knee bending angle have been used for knee pain detection. First, the CNN network has been utilized for automated feature extraction from the EEG, knee bending angle, and EMG data, and subsequently, the TLSTM network has been used as a classifier. The trained CNN-TLSTM model can classify the knee pain level of a person into five categories, namely no pain, low pain, medium pain, moderate pain, and high pain, with an overall accuracy of 95.88 %. In the hardware part, a prototype of an automated robotic knee rehabilitation system has been designed to help a person perform three rehabilitation exercises, i.e., sitting knee bending, straight leg rise, and active knee bending, according to his/her pain level, without the presence of any physiotherapist. The novelty of our research lies in (i) designing a novel deep learning-based classifier model for broadly classifying knee pain into five categories, (ii) introducing attention mechanism into the TLSTM network to boost its classification performance, and (iii) developing a user-friendly rehabilitation device for knee rehabilitation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的下肢康复综合机器人系统
在现代社会,全世界有相当一部分人都受到膝关节疼痛相关问题的困扰。膝关节疼痛 "可以通过定期以正确姿势进行膝关节康复训练来缓解。我们的研究提出了一种基于注意力机制的 CNN-TLSTM(卷积神经网络-长分类记忆)网络,用于评估人的膝关节疼痛程度。在这里,额叶、顶叶和颞叶的脑电图(EEG)信号、腘绳肌和股四头肌的肌电图(EMG)信号以及膝关节弯曲角度被用于膝关节疼痛检测。首先,利用 CNN 网络从脑电图、膝关节弯曲角度和肌电图数据中自动提取特征,然后将 TLSTM 网络用作分类器。经过训练的 CNN-TLSTM 模型可将人的膝关节疼痛程度分为五类,即无疼痛、低疼痛、中等疼痛、中度疼痛和高度疼痛,总体准确率为 95.88%。在硬件部分,我们设计了一个自动机器人膝关节康复系统的原型,可以在没有任何理疗师在场的情况下,根据患者的疼痛程度帮助其进行三种康复训练,即坐位屈膝、直腿起立和主动屈膝。我们研究的新颖之处在于:(i)设计了一种基于深度学习的新型分类器模型,可将膝关节疼痛大致分为五类;(ii)在 TLSTM 网络中引入注意力机制,以提高其分类性能;以及(iii)开发了一种用户友好型膝关节康复设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
期刊最新文献
Innovative brain tumor detection: Stacked random support vector-based hybrid gazelle coati algorithm A novel optimized machine learning approach with texture rectified cross-attention based transformer for COVID-19 detection A lightweight model for the retinal disease classification using optical coherence tomography An improved ECG data compression scheme based on ensemble empirical mode decomposition Performance evaluation of optimal ensemble learning approaches with PCA and LDA-based feature extraction for heart disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1