A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-11-12 DOI:10.1016/j.chemolab.2024.105269
Yi Liu , Angpeng Liu , Shuang Gao
{"title":"A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model","authors":"Yi Liu ,&nbsp;Angpeng Liu ,&nbsp;Shuang Gao","doi":"10.1016/j.chemolab.2024.105269","DOIUrl":null,"url":null,"abstract":"<div><div>High-precision oxygen content measurement is crucial for statistical analysis of combustion chemical reaction. Deep learning based soft sensor is a new class of intelligent tools for monitoring combustion oxygen content. But in the actual production, data for sensors are often insufficient. A new soft sensing model is proposed to display the excellent performance of denoising diffusion probabilistic model (DDPM) in data generation. Firstly, a UNet based soft sensor is designed by integrating self-attention mechanism into the convolution layers. Then, a denoising loss function is designed to link the feature extraction process of soft sensor model with the reverse denoising process of DDPM, and the noise prediction neural network of DDPM is used to improve the feature extractability of the soft sensor model. Finally, the proposed model is compared with common models. The effectiveness and superiority of the proposed soft sensing model for oxygen content prediction, especially in the case with a small sample size, are both confirmed by the results.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"255 ","pages":"Article 105269"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002090","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision oxygen content measurement is crucial for statistical analysis of combustion chemical reaction. Deep learning based soft sensor is a new class of intelligent tools for monitoring combustion oxygen content. But in the actual production, data for sensors are often insufficient. A new soft sensing model is proposed to display the excellent performance of denoising diffusion probabilistic model (DDPM) in data generation. Firstly, a UNet based soft sensor is designed by integrating self-attention mechanism into the convolution layers. Then, a denoising loss function is designed to link the feature extraction process of soft sensor model with the reverse denoising process of DDPM, and the noise prediction neural network of DDPM is used to improve the feature extractability of the soft sensor model. Finally, the proposed model is compared with common models. The effectiveness and superiority of the proposed soft sensing model for oxygen content prediction, especially in the case with a small sample size, are both confirmed by the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于去噪扩散概率模型的氧气含量预测火焰图像软传感器
高精度氧含量测量对于燃烧化学反应的统计分析至关重要。基于深度学习的软传感器是监测燃烧氧含量的一类新型智能工具。但在实际生产中,传感器的数据往往不足。为了发挥去噪扩散概率模型(DDPM)在数据生成中的优异性能,提出了一种新的软传感模型。首先,通过在卷积层中集成自注意机制,设计了一种基于 UNet 的软传感器。然后,设计了一个去噪损失函数,将软传感器模型的特征提取过程与 DDPM 的反向去噪过程联系起来,并利用 DDPM 的噪声预测神经网络来提高软传感器模型的特征提取能力。最后,将所提出的模型与普通模型进行了比较。结果证实了所提出的软传感模型在氧气含量预测方面的有效性和优越性,尤其是在样本量较小的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1