Exploring new lead-free halide perovskites RbSnM3 (M = I, Br, Cl) and achieving power conversion efficiency > 32 %

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-11-04 DOI:10.1016/j.jpcs.2024.112437
Md. Harun-Or-Rashid , Md. Ferdous Rahman , Mongi Amami , Lamia Ben Farhat , Md. Monirul Islam , Abdellah Benami
{"title":"Exploring new lead-free halide perovskites RbSnM3 (M = I, Br, Cl) and achieving power conversion efficiency > 32 %","authors":"Md. Harun-Or-Rashid ,&nbsp;Md. Ferdous Rahman ,&nbsp;Mongi Amami ,&nbsp;Lamia Ben Farhat ,&nbsp;Md. Monirul Islam ,&nbsp;Abdellah Benami","doi":"10.1016/j.jpcs.2024.112437","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-free ABX<sub>3</sub> inorganic perovskites, where A = Cs, Rb; B<img>Sn, Ge; and X = I, Br, Cl, have recently gained significant attention due to their remarkable optical, structural, and electronic properties, as well as their potential for solar cell applications. In this study, we thoroughly examined the optical, structural, and electronic properties of RbSnM<sub>3</sub> (M = I, Br, Cl) perovskites through first-principles calculations and explored their application in a HTL-free solar cell structure using SCAPS-1D. Our analysis revealed that RbSnI<sub>3</sub>, RbSnBr<sub>3</sub>, and RbSnCl<sub>3</sub> have direct band gaps of 0.828, 0.988, and 1.242 eV, respectively, using the HSE functional. The electron charge distribution indicates a strong ionic bond between Rb and the halides, as well as a significant covalent bond between Sn and the halides. Additionally, we calculated optical properties such as electron loss function, absorption coefficients, and the real and imaginary parts of the dielectric functions. We also explored the photovoltaic performance of RbSnM<sub>3</sub> absorbers paired with a SnS<sub>2</sub> ETL layer, investigating different thicknesses, defect densities, doping concentrations, and interface defect densities. The highest power conversion efficiencies (PCE) achieved were 26.38 %, 29.79 %, and 32.53 % for RbSnI<sub>3</sub>, RbSnBr<sub>3</sub>, and RbSnCl<sub>3</sub> absorber layers, respectively, when paired with a SnS<sub>2</sub> ETL. Overall, RbSnCl<sub>3</sub> stands out as a highly promising absorber material for future photovoltaic devices, especially when combined with the SnS<sub>2</sub> ETL layer.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112437"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005729","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-free ABX3 inorganic perovskites, where A = Cs, Rb; BSn, Ge; and X = I, Br, Cl, have recently gained significant attention due to their remarkable optical, structural, and electronic properties, as well as their potential for solar cell applications. In this study, we thoroughly examined the optical, structural, and electronic properties of RbSnM3 (M = I, Br, Cl) perovskites through first-principles calculations and explored their application in a HTL-free solar cell structure using SCAPS-1D. Our analysis revealed that RbSnI3, RbSnBr3, and RbSnCl3 have direct band gaps of 0.828, 0.988, and 1.242 eV, respectively, using the HSE functional. The electron charge distribution indicates a strong ionic bond between Rb and the halides, as well as a significant covalent bond between Sn and the halides. Additionally, we calculated optical properties such as electron loss function, absorption coefficients, and the real and imaginary parts of the dielectric functions. We also explored the photovoltaic performance of RbSnM3 absorbers paired with a SnS2 ETL layer, investigating different thicknesses, defect densities, doping concentrations, and interface defect densities. The highest power conversion efficiencies (PCE) achieved were 26.38 %, 29.79 %, and 32.53 % for RbSnI3, RbSnBr3, and RbSnCl3 absorber layers, respectively, when paired with a SnS2 ETL. Overall, RbSnCl3 stands out as a highly promising absorber material for future photovoltaic devices, especially when combined with the SnS2 ETL layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索新型无铅卤化物包晶 RbSnM3(M = I、Br、Cl),实现功率转换效率 > 32
无铅 ABX3 无机包晶石(其中 A = Cs、Rb;BSn、Ge;X = I、Br、Cl)因其显著的光学、结构和电子特性及其在太阳能电池中的应用潜力,最近受到了广泛关注。在本研究中,我们通过第一原理计算深入研究了 RbSnM3(M = I、Br、Cl)包晶石的光学、结构和电子特性,并利用 SCAPS-1D 探索了它们在无 HTL 太阳能电池结构中的应用。我们的分析表明,使用 HSE 函数,RbSnI3、RbSnBr3 和 RbSnCl3 的直接带隙分别为 0.828、0.988 和 1.242 eV。电子电荷分布表明,Rb 和卤化物之间存在很强的离子键,Sn 和卤化物之间也存在重要的共价键。此外,我们还计算了电子损耗函数、吸收系数、介电常数的实部和虚部等光学性质。我们还探索了与 SnS2 ETL 层配对的 RbSnM3 吸收体的光伏性能,研究了不同的厚度、缺陷密度、掺杂浓度和界面缺陷密度。与 SnS2 ETL 配对的 RbSnI3、RbSnBr3 和 RbSnCl3 吸收层的最高功率转换效率(PCE)分别为 26.38%、29.79% 和 32.53%。总之,RbSnCl3 是一种非常有前途的吸收材料,可用于未来的光伏设备,尤其是与 SnS2 ETL 层结合使用时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Editorial Board Study on structure and electrical properties of BNBT-La2/3ZrO3 ceramic Constructing a binderless carbon-coated In2O3 anode for high-performance lithium-ion batteries Simulation and optimization of a CsSnI3/CsSnGeI3/Cs3Bi2I9 based triple absorber layer perovskite solar cell using SCAPS-1D RPA Dielectric functions: Streamlined approach to relaxation effects, binding and high momentum dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1