Layered double hydroxides-derived CoNi alloy nanoparticles encapsulated by porous N-doped carbon nanofibers as efficient methanol electrocatalysts for alkaline direct methanol fuel cells

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-05 DOI:10.1016/j.colsurfa.2024.135703
Chong Zhang , Shuyan Yu , Fei Chen , Shiquan Guo , Man Guo , Le Wang , Congju Li
{"title":"Layered double hydroxides-derived CoNi alloy nanoparticles encapsulated by porous N-doped carbon nanofibers as efficient methanol electrocatalysts for alkaline direct methanol fuel cells","authors":"Chong Zhang ,&nbsp;Shuyan Yu ,&nbsp;Fei Chen ,&nbsp;Shiquan Guo ,&nbsp;Man Guo ,&nbsp;Le Wang ,&nbsp;Congju Li","doi":"10.1016/j.colsurfa.2024.135703","DOIUrl":null,"url":null,"abstract":"<div><div>The exploration of inexpensive electrocatalysts possessing high activity and increased stability to replace precious metal catalysts in the methanol oxidation reaction (MOR) is highly desirable for alkaline direct methanol fuel cells (ADMFCs). This study presents a novel approach to synthesize layered double hydroxides (LDHs)-derived CoNi alloy nanoparticles confined within porous N-doped carbon nanofibers (CoNi@NCNFs) via facile electrospinning and pyrolysis for methanol electrooxidation. The one-dimensional N-doped carbon nanofibers could effectively prevent nanoparticle agglomeration during the pyrolysis of LDH precursors. The optimized CoNi@NCNF3–900 composite exhibits exceptional catalytic activity (80.3 mA cm<sup>−2</sup>) for MOR in alkaline solution, attributed to its hierarchical porous structure, high surface area, and abundant accessible active sites. Furthermore, the catalyst demonstrates competitive electrocatalytic stability, retaining over 90 % of its initial current density after 1000 consecutive cyclic voltammetry (CV) cycles. Notably, a single-cell ADMFC assembled with CoNi@NCNF3–900 as the anode catalyst achieves a promising maximum power density of 29.5 mW cm<sup>−2</sup>, highlighting the potential of CoNi@NCNF3–900 for application in DMFC technology and clean energy sources.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135703"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724025676","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of inexpensive electrocatalysts possessing high activity and increased stability to replace precious metal catalysts in the methanol oxidation reaction (MOR) is highly desirable for alkaline direct methanol fuel cells (ADMFCs). This study presents a novel approach to synthesize layered double hydroxides (LDHs)-derived CoNi alloy nanoparticles confined within porous N-doped carbon nanofibers (CoNi@NCNFs) via facile electrospinning and pyrolysis for methanol electrooxidation. The one-dimensional N-doped carbon nanofibers could effectively prevent nanoparticle agglomeration during the pyrolysis of LDH precursors. The optimized CoNi@NCNF3–900 composite exhibits exceptional catalytic activity (80.3 mA cm−2) for MOR in alkaline solution, attributed to its hierarchical porous structure, high surface area, and abundant accessible active sites. Furthermore, the catalyst demonstrates competitive electrocatalytic stability, retaining over 90 % of its initial current density after 1000 consecutive cyclic voltammetry (CV) cycles. Notably, a single-cell ADMFC assembled with CoNi@NCNF3–900 as the anode catalyst achieves a promising maximum power density of 29.5 mW cm−2, highlighting the potential of CoNi@NCNF3–900 for application in DMFC technology and clean energy sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔 N 掺杂碳纳米纤维包裹的层状双氢氧化物衍生 CoNi 合金纳米粒子作为碱性直接甲醇燃料电池的高效甲醇电催化剂
在碱性直接甲醇燃料电池(ADMFC)中,探索具有高活性和更高稳定性的廉价电催化剂以取代甲醇氧化反应(MOR)中的贵金属催化剂是非常理想的。本研究提出了一种新方法,通过简便的电纺丝和热解工艺,在多孔掺杂 N 的纳米碳纤维(CoNi@NCNFs)中合成层状双氢氧化物(LDHs)衍生的 CoNi 合金纳米颗粒,用于甲醇电氧化反应。一维 N-掺杂碳纳米纤维可有效防止 LDH 前驱体热解过程中的纳米粒子团聚。优化后的 CoNi@NCNF3-900 复合材料对碱性溶液中的 MOR 具有优异的催化活性(80.3 mA cm-2),这归功于其分层多孔结构、高比表面积和丰富的可访问活性位点。此外,该催化剂还表现出极具竞争力的电催化稳定性,在连续 1000 个循环伏安法(CV)周期后,其初始电流密度仍保持在 90% 以上。值得注意的是,用 CoNi@NCNF3-900 作为阳极催化剂组装的单电池 ADMFC 达到了 29.5 mW cm-2 的最大功率密度,这凸显了 CoNi@NCNF3-900 在 DMFC 技术和清洁能源方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Comprehensive consideration of screening fluoride electrolyte for electrodeposition of rare earth cerium Synergistic effects of mediated by different 1,2-epoxybutane addition numbers butoxylated alkyl block alcohol ethers and SDS in mixed systems Construction of BaTiO3/g-C3N4 S-type heterojunctions for photocatalytic degradation of Tetracycline Synergistic degradation and ecotoxicology assessment of tetracycline by II-scheme Cu3BiS3/Bi2Fe4O9 photocatalytic activation of peroxymonosulfate Atom-level local structures of a ternary composite of cellulose and metal (hydro)oxides and its applications on lead ion capture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1