Shoaib Mukhtar , Erzsébet Szabó-Bárdos , Ottó Horváth , Éva Makó , Tatjána Juzsakova , Zsombor Molnár
{"title":"Bio-inspired synthesis of Ag-g-C3N4 nanocomposites and their application for photocatalytic degradation of para-nitrophenol","authors":"Shoaib Mukhtar , Erzsébet Szabó-Bárdos , Ottó Horváth , Éva Makó , Tatjána Juzsakova , Zsombor Molnár","doi":"10.1016/j.colsurfa.2024.135739","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocomposites are promising in advanced materials for environmental applications due to their ability to boost functionality through synergistic effects. Graphitic carbon nitride (<em>g</em>-C<sub>3</sub>N<sub>4</sub>) is renowned for its exceptional characteristics in photocatalysis. This work examines the preparation of <em>g</em>-C<sub>3</sub>N<sub>4</sub> from different precursors, and how the presence of silver nanoparticles (Ag NPs) and silver ions (Ag<sup>+</sup>) in <em>g</em>-C<sub>3</sub>N<sub>4</sub> matrices improve their combined effect on photocatalytic activity, specifically in the degradation of para-nitrophenol (PNP), a persistent organic pollutant. From urea and melamine precursors for the preparation of <em>g</em>-C<sub>3</sub>N<sub>4</sub>, the latter provided a much higher yield. Using an easy synthesis approach, Ag NPs were evenly distributed in the <em>g</em>-C<sub>3</sub>N<sub>4</sub> framework, whereas Ag<sup>+</sup> ions were incorporated by an apparent physical procedure. A bio-inspired, environmentally friendly method was also applied to prepare Ag NPs. The nanocomposites showed improved light absorption and separation of charge carriers due to the synergistic interaction between <em>g</em>-C<sub>3</sub>N<sub>4</sub> and Ag species. Using UV and Vis LED light sources, we investigated both pure <em>g</em>-C<sub>3</sub>N<sub>4</sub> and Ag<em>-g</em>-C<sub>3</sub>N<sub>4</sub> catalysts. For breaking down para-nitrophenol, the silver-modified catalysts performed significantly better than pure <em>g</em>-C<sub>3</sub>N<sub>4</sub> in both UV and Vis. The study clarified the functions of Ag NPs and Ag<sup>+</sup> ions in enhancing photocatalytic activity by examining their involvement in generating reactive oxygen species and degrading pollutants. This work highlights the capability of <em>g</em>-C<sub>3</sub>N<sub>4</sub>-based nanocomposites as effective photocatalysts for environmental remediation. It also explores the benefits of adding silver species to improve performance in degrading pollutants.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135739"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026037","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocomposites are promising in advanced materials for environmental applications due to their ability to boost functionality through synergistic effects. Graphitic carbon nitride (g-C3N4) is renowned for its exceptional characteristics in photocatalysis. This work examines the preparation of g-C3N4 from different precursors, and how the presence of silver nanoparticles (Ag NPs) and silver ions (Ag+) in g-C3N4 matrices improve their combined effect on photocatalytic activity, specifically in the degradation of para-nitrophenol (PNP), a persistent organic pollutant. From urea and melamine precursors for the preparation of g-C3N4, the latter provided a much higher yield. Using an easy synthesis approach, Ag NPs were evenly distributed in the g-C3N4 framework, whereas Ag+ ions were incorporated by an apparent physical procedure. A bio-inspired, environmentally friendly method was also applied to prepare Ag NPs. The nanocomposites showed improved light absorption and separation of charge carriers due to the synergistic interaction between g-C3N4 and Ag species. Using UV and Vis LED light sources, we investigated both pure g-C3N4 and Ag-g-C3N4 catalysts. For breaking down para-nitrophenol, the silver-modified catalysts performed significantly better than pure g-C3N4 in both UV and Vis. The study clarified the functions of Ag NPs and Ag+ ions in enhancing photocatalytic activity by examining their involvement in generating reactive oxygen species and degrading pollutants. This work highlights the capability of g-C3N4-based nanocomposites as effective photocatalysts for environmental remediation. It also explores the benefits of adding silver species to improve performance in degrading pollutants.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.