Salma González-Sabbagh , Antonio Robles-Kelly , Shang Gao
{"title":"Scene-cGAN: A GAN for underwater restoration and scene depth estimation","authors":"Salma González-Sabbagh , Antonio Robles-Kelly , Shang Gao","doi":"10.1016/j.cviu.2024.104225","DOIUrl":null,"url":null,"abstract":"<div><div>Despite their wide scope of application, the development of underwater models for image restoration and scene depth estimation is not a straightforward task due to the limited size and quality of underwater datasets, as well as variations in water colours resulting from attenuation, absorption and scattering phenomena in the water column. To address these challenges, we present an all-in-one conditional generative adversarial network (cGAN) called Scene-cGAN. Our cGAN is a physics-based multi-domain model designed for image dewatering, restoration and depth estimation. It comprises three generators and one discriminator. To train our Scene-cGAN, we use a multi-term loss function based on uni-directional cycle-consistency and a novel dataset. This dataset is constructed from RGB-D in-air images using spectral data and concentrations of water constituents obtained from real-world water quality surveys. This approach allows us to produce imagery consistent with the radiance and veiling light corresponding to representative water types. Additionally, we compare Scene-cGAN with current state-of-the-art methods using various datasets. Results demonstrate its competitiveness in terms of colour restoration and its effectiveness in estimating the depth information for complex underwater scenes.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104225"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003060","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their wide scope of application, the development of underwater models for image restoration and scene depth estimation is not a straightforward task due to the limited size and quality of underwater datasets, as well as variations in water colours resulting from attenuation, absorption and scattering phenomena in the water column. To address these challenges, we present an all-in-one conditional generative adversarial network (cGAN) called Scene-cGAN. Our cGAN is a physics-based multi-domain model designed for image dewatering, restoration and depth estimation. It comprises three generators and one discriminator. To train our Scene-cGAN, we use a multi-term loss function based on uni-directional cycle-consistency and a novel dataset. This dataset is constructed from RGB-D in-air images using spectral data and concentrations of water constituents obtained from real-world water quality surveys. This approach allows us to produce imagery consistent with the radiance and veiling light corresponding to representative water types. Additionally, we compare Scene-cGAN with current state-of-the-art methods using various datasets. Results demonstrate its competitiveness in terms of colour restoration and its effectiveness in estimating the depth information for complex underwater scenes.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems