Zhihao Zhang , Jie He , Mouquan Shen , Xianqiang Yang
{"title":"Seam estimation based on dense matching for parallax-tolerant image stitching","authors":"Zhihao Zhang , Jie He , Mouquan Shen , Xianqiang Yang","doi":"10.1016/j.cviu.2024.104219","DOIUrl":null,"url":null,"abstract":"<div><div>Image stitching with large parallax poses a significant challenge in the field of computer vision. Existing seam-based approaches attempt to address parallax artifacts by stitching images along seams. However, issues such as object mismatches, disappearances, and duplications still arise occasionally, primarily due to inaccurate alignment of dense pixels or inappropriate seam estimation methods. In this paper, we propose a robust seam-based parallax-tolerant image stitching method that leverages dense flow estimation from state-of-the-art approaches. Firstly, we develop a seam estimation method that does not require pre-estimation of image warping model. Instead, it directly estimates the seam by measuring the local smoothness of the optical flow field and incorporating a penalty term for duplications. Subsequently, we design an iterative algorithm that utilizes the location of estimated seam to solve a spatial smooth warping model and eliminate outlier corresponding pairs. By employing this approach, we effectively address the intertwined challenges of estimating the warping model and seam. Experiment on real-world images shows that our proposed method achieves superior local alignment accuracy near the stitching seam and outperforms other state-of-the-art techniques on visual stitching result. Code is available at <span><span>https://github.com/zhihao0512/dense-matching-image-stitching</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104219"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422400300X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image stitching with large parallax poses a significant challenge in the field of computer vision. Existing seam-based approaches attempt to address parallax artifacts by stitching images along seams. However, issues such as object mismatches, disappearances, and duplications still arise occasionally, primarily due to inaccurate alignment of dense pixels or inappropriate seam estimation methods. In this paper, we propose a robust seam-based parallax-tolerant image stitching method that leverages dense flow estimation from state-of-the-art approaches. Firstly, we develop a seam estimation method that does not require pre-estimation of image warping model. Instead, it directly estimates the seam by measuring the local smoothness of the optical flow field and incorporating a penalty term for duplications. Subsequently, we design an iterative algorithm that utilizes the location of estimated seam to solve a spatial smooth warping model and eliminate outlier corresponding pairs. By employing this approach, we effectively address the intertwined challenges of estimating the warping model and seam. Experiment on real-world images shows that our proposed method achieves superior local alignment accuracy near the stitching seam and outperforms other state-of-the-art techniques on visual stitching result. Code is available at https://github.com/zhihao0512/dense-matching-image-stitching.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems