Temporal and spatial variations of soil nematode assemblages across distinct forest ecosystems

IF 1.8 4区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION Food Webs Pub Date : 2024-11-06 DOI:10.1016/j.fooweb.2024.e00376
Shahid Afzal, Wasim Ahmad
{"title":"Temporal and spatial variations of soil nematode assemblages across distinct forest ecosystems","authors":"Shahid Afzal,&nbsp;Wasim Ahmad","doi":"10.1016/j.fooweb.2024.e00376","DOIUrl":null,"url":null,"abstract":"<div><div>The bottom-up effects of vegetation are widely recognized as important factors influencing the structure and functioning of soil food webs in forests. However, the influence of forest type on the composition and stability of soil nematode communities remains underexplored. In this study, we investigated the abundance, composition, diversity, and various aspects of soil nematode communities across three distinct forest types - Sub-tropical Pine Forests (STPF), Himalayan Moist Temperate Forests (HMTF), and Himalayan Dry Temperate Forests (HDTF) - during two seasons (summer and autumn). In both summer and autumn, total nematode abundance and the abundance of bacterivores were significantly higher in STPF compared to the other two forest types. Taxonomic diversity, as indicated by the Simpson index, was also greater in STPF during both seasons. The higher maturity index and sigma maturity index values observed in STPF suggest a more stable nematode community in the summer season. The soil nematode faunal profile indicated an enriched and structured food web in STPF across both seasons. Additionally, the metabolic footprint of the entire nematode community was considerably higher in STPF during the summer. Overall, soil nematode communities were most stable in STPF and least stable in HDTF. Our findings suggest that the Sub-tropical Pine Forests in the Pir-Panjal mountain range, across two contrasting seasons, support a higher level of soil food web structure and more complex soil biological communities than the other forest types. This study provides a foundation for understanding soil food web structure, function, and seasonal stability, which has important implications for sustainable forest management.</div></div>","PeriodicalId":38084,"journal":{"name":"Food Webs","volume":"41 ","pages":"Article e00376"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Webs","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352249624000429","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The bottom-up effects of vegetation are widely recognized as important factors influencing the structure and functioning of soil food webs in forests. However, the influence of forest type on the composition and stability of soil nematode communities remains underexplored. In this study, we investigated the abundance, composition, diversity, and various aspects of soil nematode communities across three distinct forest types - Sub-tropical Pine Forests (STPF), Himalayan Moist Temperate Forests (HMTF), and Himalayan Dry Temperate Forests (HDTF) - during two seasons (summer and autumn). In both summer and autumn, total nematode abundance and the abundance of bacterivores were significantly higher in STPF compared to the other two forest types. Taxonomic diversity, as indicated by the Simpson index, was also greater in STPF during both seasons. The higher maturity index and sigma maturity index values observed in STPF suggest a more stable nematode community in the summer season. The soil nematode faunal profile indicated an enriched and structured food web in STPF across both seasons. Additionally, the metabolic footprint of the entire nematode community was considerably higher in STPF during the summer. Overall, soil nematode communities were most stable in STPF and least stable in HDTF. Our findings suggest that the Sub-tropical Pine Forests in the Pir-Panjal mountain range, across two contrasting seasons, support a higher level of soil food web structure and more complex soil biological communities than the other forest types. This study provides a foundation for understanding soil food web structure, function, and seasonal stability, which has important implications for sustainable forest management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同森林生态系统中土壤线虫组合的时空变化
植被的自下而上效应被广泛认为是影响森林土壤食物网结构和功能的重要因素。然而,森林类型对土壤线虫群落组成和稳定性的影响仍未得到充分探索。在这项研究中,我们调查了亚热带松树林(STPF)、喜马拉雅湿润温带森林(HMTF)和喜马拉雅干燥温带森林(HDTF)三种不同森林类型在夏季和秋季两个季节中土壤线虫群落的丰度、组成、多样性和各个方面。在夏季和秋季,STPF 的线虫总丰度和细菌丰度都明显高于其他两种森林类型。辛普森指数(Simpson index)显示,STPF 在这两个季节的分类多样性也更高。在 STPF 中观察到的较高成熟度指数和西格玛成熟度指数值表明,夏季的线虫群落更为稳定。土壤线虫动物群落剖面显示,STPF 的食物网在两个季节都很丰富且结构合理。此外,STPF 中整个线虫群落的代谢足迹在夏季要高得多。总体而言,STPF 的土壤线虫群落最稳定,而 HDTF 的最不稳定。我们的研究结果表明,与其他森林类型相比,皮尔-潘贾尔山脉的亚热带松树林在两个不同的季节支持更高水平的土壤食物网结构和更复杂的土壤生物群落。这项研究为了解土壤食物网的结构、功能和季节稳定性奠定了基础,对可持续森林管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Webs
Food Webs Environmental Science-Ecology
CiteScore
2.80
自引率
5.90%
发文量
42
期刊最新文献
Between mosquitoes and stoneflies: Observation of Plecoptera nymphs preying on chironomid larvae (Diptera) Diet of the Arabian collared kingfisher (Todiramphus chloris kalbaensis): Insights from trail cameras and regurgitation pellets Phoresy and interactions between Scotocryptus beetles and stingless bees Predation of Gripopteryx sp. (Plecoptera: Gripopterygidae) by Argia claussenii Selys, 1865 (Odonata: Coenagrionidae) in Campo Rupestre, Minas Gerais Hygrophilous springtails (Arthropoda: Collembola) with different diets are a potential source of eicosapentaenoic fatty acid for terrestrial consumers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1