Dongdi Zhao , Huaiyu Cui , Shuai Wang , Yuebin Yi , Bo An , Zhigang Fan , Yongpeng Zhao
{"title":"The study of capillary discharge Ne-like 46.9 nm laser with a 2.5 mm inner diameter capillary","authors":"Dongdi Zhao , Huaiyu Cui , Shuai Wang , Yuebin Yi , Bo An , Zhigang Fan , Yongpeng Zhao","doi":"10.1016/j.optcom.2024.131257","DOIUrl":null,"url":null,"abstract":"<div><div>The capillary discharge 46.9 nm laser experiment was conducted using an alumina capillary of 35 cm in length and 2.5 mm in inner diameter. In terms of temporal characteristics, the duration (FWHM) of the laser pulse is 1.6 ns. The laser energy obtained with the 2.5 mm diameter capillary can be up to 1 mJ. For comparison, the laser energy achieved with the commonly used 3.2 mm diameter capillary is 305 μJ. With regard to spatial properties, the laser spot obtained at the optimal pressure using the 2.5 mm diameter capillary has a spatial distribution that is Gaussian-like, and the divergence's FWHM is 0.61 mrad. In order to investigate the effect of the capillary inner diameter on the 46.9 nm laser, we computed the plasma column characteristics near the lasing times observed with the 2.5 mm and 3.2 mm diameter capillaries.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131257"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824009945","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The capillary discharge 46.9 nm laser experiment was conducted using an alumina capillary of 35 cm in length and 2.5 mm in inner diameter. In terms of temporal characteristics, the duration (FWHM) of the laser pulse is 1.6 ns. The laser energy obtained with the 2.5 mm diameter capillary can be up to 1 mJ. For comparison, the laser energy achieved with the commonly used 3.2 mm diameter capillary is 305 μJ. With regard to spatial properties, the laser spot obtained at the optimal pressure using the 2.5 mm diameter capillary has a spatial distribution that is Gaussian-like, and the divergence's FWHM is 0.61 mrad. In order to investigate the effect of the capillary inner diameter on the 46.9 nm laser, we computed the plasma column characteristics near the lasing times observed with the 2.5 mm and 3.2 mm diameter capillaries.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.