Deep learning method for predicting the complex nonlinear dynamics of passively mode-locked fiber laser

IF 2.2 3区 物理与天体物理 Q2 OPTICS Optics Communications Pub Date : 2024-11-07 DOI:10.1016/j.optcom.2024.131286
Boyuan Zhang, Dongdong Han, Tiantian Li, Kaili Ren, Yipeng Zheng, Lipeng Zhu, Jiamin Gong, Zhanqiang Hui
{"title":"Deep learning method for predicting the complex nonlinear dynamics of passively mode-locked fiber laser","authors":"Boyuan Zhang,&nbsp;Dongdong Han,&nbsp;Tiantian Li,&nbsp;Kaili Ren,&nbsp;Yipeng Zheng,&nbsp;Lipeng Zhu,&nbsp;Jiamin Gong,&nbsp;Zhanqiang Hui","doi":"10.1016/j.optcom.2024.131286","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic evolution processes are highly complicated nonlinear dynamic processes in passively mode-locked fiber laser systems. Here, an artificial intelligence (AI) model is employed to predict the complex dynamic processes, which uses the long short-term memory network method, serving as an alternative to the numerical calculation of the nonlinear Schrödinger equation (NLSE). We specifically emphasize the complex evolution processes under different gain saturation energies, comparing the results predicted by the AI model with those simulated by the NLSE. The predicted results of the AI model are in good agreement with the simulated results of NLSE. The root mean square errors of test samples in this study are all below 0.15. Furthermore, with GPU acceleration, the AI model achieves a mean simulation time of 0.452 s for 6000 roundtrips, approximately 2391 times faster than the numerical solution of NLSE executed on a CPU.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131286"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003040182401023X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic evolution processes are highly complicated nonlinear dynamic processes in passively mode-locked fiber laser systems. Here, an artificial intelligence (AI) model is employed to predict the complex dynamic processes, which uses the long short-term memory network method, serving as an alternative to the numerical calculation of the nonlinear Schrödinger equation (NLSE). We specifically emphasize the complex evolution processes under different gain saturation energies, comparing the results predicted by the AI model with those simulated by the NLSE. The predicted results of the AI model are in good agreement with the simulated results of NLSE. The root mean square errors of test samples in this study are all below 0.15. Furthermore, with GPU acceleration, the AI model achieves a mean simulation time of 0.452 s for 6000 roundtrips, approximately 2391 times faster than the numerical solution of NLSE executed on a CPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测无源模式锁定光纤激光器复杂非线性动态的深度学习方法
动态演化过程是被动锁模光纤激光系统中高度复杂的非线性动态过程。这里采用了人工智能(AI)模型来预测复杂的动态过程,该模型使用了长短期记忆网络方法,作为非线性薛定谔方程(NLSE)数值计算的替代方法。我们特别强调了不同增益饱和能量下的复杂演化过程,并将人工智能模型预测的结果与非线性薛定谔方程模拟的结果进行了比较。人工智能模型的预测结果与 NLSE 的模拟结果非常吻合。本研究中测试样本的均方根误差均低于 0.15。此外,在 GPU 加速下,人工智能模型对 6000 次往返的平均模拟时间为 0.452 秒,比在 CPU 上执行的 NLSE 数值解法快约 2391 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
期刊最新文献
The study of capillary discharge Ne-like 46.9 nm laser with a 2.5 mm inner diameter capillary First real-time single-span 106-km field trial using commercial 130-Gbaud DP-QPSK 400 Gb/s backbone OTN transceivers over deployed multi-core fiber cable Optical light scattering to improve image classification via wavelength division multiplexing Frequency-modulated dual-pulse phase-sensitive optical time-domain reflectometry with direct detection Three-dimensional endoscopic imaging system based on micro-lithography mask structured light projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1