Wilfried Blanc , Daniele Tosi , Arnaldo Leal-Junior , Maurizio Ferrari , John Ballato
{"title":"Are low- and high-loss glass–ceramic optical fibers possible game changers?","authors":"Wilfried Blanc , Daniele Tosi , Arnaldo Leal-Junior , Maurizio Ferrari , John Ballato","doi":"10.1016/j.optcom.2024.131300","DOIUrl":null,"url":null,"abstract":"<div><div>The transparency of optical fibers is one of the most sought-after properties for this optical waveguide, the paradigmatic example being fibers for long-haul telecommunications. This transparency is achieved by eliminating absorbing centers and heterogeneities. So, the idea of deliberately introducing nanoparticles into the core of a fiber seems to go against the usual doxa, given the light scattering they induce. Such fibers, mainly based on silica glass, were first designed to modify luminescence properties to develop fiber lasers and amplifiers. For such applications, light scattering must be limited. However, over the last five years, light scattering has proved to be a valuable property for sensor applications. This review article is an opportunity to review the state of the art in nanoparticle-containing optical fibers, and to highlight their potential for laser and sensor applications.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131300"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003040182401037X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The transparency of optical fibers is one of the most sought-after properties for this optical waveguide, the paradigmatic example being fibers for long-haul telecommunications. This transparency is achieved by eliminating absorbing centers and heterogeneities. So, the idea of deliberately introducing nanoparticles into the core of a fiber seems to go against the usual doxa, given the light scattering they induce. Such fibers, mainly based on silica glass, were first designed to modify luminescence properties to develop fiber lasers and amplifiers. For such applications, light scattering must be limited. However, over the last five years, light scattering has proved to be a valuable property for sensor applications. This review article is an opportunity to review the state of the art in nanoparticle-containing optical fibers, and to highlight their potential for laser and sensor applications.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.