Combining residual convolutional LSTM with attention mechanisms for spatiotemporal forest cover prediction

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-11-04 DOI:10.1016/j.envsoft.2024.106260
Bao Liu , Siqi Chen , Lei Gao
{"title":"Combining residual convolutional LSTM with attention mechanisms for spatiotemporal forest cover prediction","authors":"Bao Liu ,&nbsp;Siqi Chen ,&nbsp;Lei Gao","doi":"10.1016/j.envsoft.2024.106260","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding spatiotemporal variations in forest cover is crucial for effective forest resource management. However, existing models often lack accuracy in simultaneously capturing temporal continuity and spatial correlation. To address this challenge, we developed ResConvLSTM-Att, a novel hybrid model integrating residual neural networks, Convolutional Long Short-Term Memory (ConvLSTM) networks, and attention mechanisms. We evaluated ResConvLSTM-Att against four deep learning models: LSTM, combined convolutional neural network and LSTM (CNN-LSTM), ConvLSTM, and ResConvLSTM for spatiotemporal prediction of forest cover in Tasmania, Australia. ResConvLSTM-Att achieved outstanding prediction performance, with an average root mean square error (RMSE) of 6.9% coverage and an impressive average coefficient of determination of 0.965. Compared with LSTM, CNN-LSTM, ConvLSTM, and ResConvLSTM, ResConvLSTM-Att achieved RMSE reductions of 31.2%, 43.0%, 10.1%, and 6.5%, respectively. Additionally, we quantified the impacts of explanatory variables on forest cover dynamics. Our work demonstrated the effectiveness of ResConvLSTM-Att in spatiotemporal data modelling and prediction.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106260"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003219","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding spatiotemporal variations in forest cover is crucial for effective forest resource management. However, existing models often lack accuracy in simultaneously capturing temporal continuity and spatial correlation. To address this challenge, we developed ResConvLSTM-Att, a novel hybrid model integrating residual neural networks, Convolutional Long Short-Term Memory (ConvLSTM) networks, and attention mechanisms. We evaluated ResConvLSTM-Att against four deep learning models: LSTM, combined convolutional neural network and LSTM (CNN-LSTM), ConvLSTM, and ResConvLSTM for spatiotemporal prediction of forest cover in Tasmania, Australia. ResConvLSTM-Att achieved outstanding prediction performance, with an average root mean square error (RMSE) of 6.9% coverage and an impressive average coefficient of determination of 0.965. Compared with LSTM, CNN-LSTM, ConvLSTM, and ResConvLSTM, ResConvLSTM-Att achieved RMSE reductions of 31.2%, 43.0%, 10.1%, and 6.5%, respectively. Additionally, we quantified the impacts of explanatory variables on forest cover dynamics. Our work demonstrated the effectiveness of ResConvLSTM-Att in spatiotemporal data modelling and prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将残差卷积 LSTM 与注意力机制相结合,用于时空森林覆盖率预测
了解森林覆盖率的时空变化对于有效管理森林资源至关重要。然而,现有模型在同时捕捉时间连续性和空间相关性方面往往缺乏准确性。为了应对这一挑战,我们开发了 ResConvLSTM-Att,这是一种集成了残差神经网络、卷积长短期记忆(ConvLSTM)网络和注意力机制的新型混合模型。我们针对四种深度学习模型对 ResConvLSTM-Att 进行了评估:LSTM、卷积神经网络与 LSTM 的组合(CNN-LSTM)、ConvLSTM 和 ResConvLSTM,对澳大利亚塔斯马尼亚的森林覆盖率进行了时空预测。ResConvLSTM-Att 实现了出色的预测性能,平均均方根误差 (RMSE) 为覆盖率的 6.9%,平均判定系数为 0.965,令人印象深刻。与 LSTM、CNN-LSTM、ConvLSTM 和 ResConvLSTM 相比,ResConvLSTM-Att 的 RMSE 分别降低了 31.2%、43.0%、10.1% 和 6.5%。此外,我们还量化了解释变量对森林植被动态的影响。我们的工作证明了 ResConvLSTM-Att 在时空数据建模和预测方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1