Discovering data spaces: A classification of design options

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers in Industry Pub Date : 2024-11-15 DOI:10.1016/j.compind.2024.104212
Anna Gieß , Thorsten Schoormann , Frederik Möller , Inan Gür
{"title":"Discovering data spaces: A classification of design options","authors":"Anna Gieß ,&nbsp;Thorsten Schoormann ,&nbsp;Frederik Möller ,&nbsp;Inan Gür","doi":"10.1016/j.compind.2024.104212","DOIUrl":null,"url":null,"abstract":"<div><div>Technical coordination between organizations and security concerns are among the major barriers to data sharing. Data spaces are an emerging digital infrastructure that helps address these challenges by sovereignly sharing data across institutional boundaries. The data space concept is at the core of many high-profile research initiatives in the European Union and receives great adoption in practice. Despite the great interest, there is, however, a demand for more conceptual clarity and approaches to describe and design them purposefully. We propose a taxonomy of data space design options grounded in a literature review, an analysis of real-world objects, and over nine hours of expert interviews with data space initiatives. The taxonomy advances our understanding of data space designs and gives a framework to practice making informed design decisions. Our work provides a comprehensive solution space for data space designers to (a) (re-)design data spaces more efficiently and (b) acquire a ‘big picture’ of what needs to be considered.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104212"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001404","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Technical coordination between organizations and security concerns are among the major barriers to data sharing. Data spaces are an emerging digital infrastructure that helps address these challenges by sovereignly sharing data across institutional boundaries. The data space concept is at the core of many high-profile research initiatives in the European Union and receives great adoption in practice. Despite the great interest, there is, however, a demand for more conceptual clarity and approaches to describe and design them purposefully. We propose a taxonomy of data space design options grounded in a literature review, an analysis of real-world objects, and over nine hours of expert interviews with data space initiatives. The taxonomy advances our understanding of data space designs and gives a framework to practice making informed design decisions. Our work provides a comprehensive solution space for data space designers to (a) (re-)design data spaces more efficiently and (b) acquire a ‘big picture’ of what needs to be considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现数据空间:设计方案分类
各组织之间的技术协调和安全问题是数据共享的主要障碍。数据空间是一种新兴的数字基础设施,通过跨机构主权共享数据来帮助应对这些挑战。数据空间概念是欧盟许多备受瞩目的研究计划的核心,并在实践中得到广泛采用。尽管人们对其兴趣浓厚,但仍需要更清晰的概念和方法来有目的地描述和设计数据空间。我们根据文献综述、对现实世界对象的分析以及对数据空间计划超过九小时的专家访谈,提出了数据空间设计选项分类法。该分类法加深了我们对数据空间设计的理解,并为做出明智的设计决策提供了一个实践框架。我们的工作为数据空间设计人员提供了一个全面的解决方案空间,以便:(a) 更有效地(重新)设计数据空间;(b) 获取需要考虑的 "全貌"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
期刊最新文献
Wasserstein distributionally robust learning for predicting the cycle time of printed circuit board production BRepQL: Query language for searching topological elements in B-rep models A Comparative Study of Handheld Augmented Reality Interaction Techniques for Developing AR Instructions using AR Authoring Tools Discovering data spaces: A classification of design options Evaluating the noise tolerance of Cloud NLP services across Amazon, Microsoft, and Google
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1