{"title":"D3 framework: An evidence-based data-driven design framework for new product service development","authors":"Boyeun Lee, Saeema Ahmed-Kristensen","doi":"10.1016/j.compind.2024.104206","DOIUrl":null,"url":null,"abstract":"<div><div>Despite growing interest in the use of data for product and service development, a comprehensive understanding of how data is employed in the context of new product, service and product–service system development is lacking. With the aim of deepening understanding of data as a critical resource for generating value through new products and services, we conducted a systematic literature review, conceptualised through a framework and evaluated with a questionnaire survey. This study (1) identifies the relationships between methodologies and various data-x design concepts, together with their contributions; (2) investigates the types of data captured and utilised across the product/service development process; (3) identifies data-driven design (DDD) activities and the types of data for each activity and (4) develops and validates an evidence-based framework of DDD for new product/service development processes. This study is distinct from previous work as our theoretical foundation identifies seven DDD activities alongside the types of data captured and utilised throughout the new product, service or product–service system development. The key findings highlight the relationship between commonly used concepts for using data in product/service development (i.e., data-driven, -enabled, -centric, -aware, -informed, and design analytics) and their methodological differences. The findings show that whereas data is currently captured predominantly from the in-use phase of a product/service, it is mainly used to support concept development. This paper contributes by developing a DDD framework, which helps practitioners understand how data and machine learning approaches can be used for product/service development. The evidence-based framework also contributes to the body of knowledge on data-x design and the understanding of the role of data in product/service development.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104206"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001349","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite growing interest in the use of data for product and service development, a comprehensive understanding of how data is employed in the context of new product, service and product–service system development is lacking. With the aim of deepening understanding of data as a critical resource for generating value through new products and services, we conducted a systematic literature review, conceptualised through a framework and evaluated with a questionnaire survey. This study (1) identifies the relationships between methodologies and various data-x design concepts, together with their contributions; (2) investigates the types of data captured and utilised across the product/service development process; (3) identifies data-driven design (DDD) activities and the types of data for each activity and (4) develops and validates an evidence-based framework of DDD for new product/service development processes. This study is distinct from previous work as our theoretical foundation identifies seven DDD activities alongside the types of data captured and utilised throughout the new product, service or product–service system development. The key findings highlight the relationship between commonly used concepts for using data in product/service development (i.e., data-driven, -enabled, -centric, -aware, -informed, and design analytics) and their methodological differences. The findings show that whereas data is currently captured predominantly from the in-use phase of a product/service, it is mainly used to support concept development. This paper contributes by developing a DDD framework, which helps practitioners understand how data and machine learning approaches can be used for product/service development. The evidence-based framework also contributes to the body of knowledge on data-x design and the understanding of the role of data in product/service development.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.