Yanshen Zhao, Lu Yang, Xingbin Wei, Huaidong Liu, Shihang Sun
{"title":"Tuning the photoelectric properties of ZrS2/ZrSe2 heterojunction via shear strain and electric field","authors":"Yanshen Zhao, Lu Yang, Xingbin Wei, Huaidong Liu, Shihang Sun","doi":"10.1016/j.chemphys.2024.112518","DOIUrl":null,"url":null,"abstract":"<div><div>This paper uses the first principle calculation method based on density functional theory to systematically analyze the effects of different stacking modes, shear strain, and electric fields on the photoelectric properties of ZrS<sub>2</sub>/ZrSe<sub>2</sub> heterojunction. Firstly, we analyze five different stacking modes and select the mode with the lowest formation energy. At the same time, ZrS<sub>2</sub>/ZrSe<sub>2</sub> is a heterostructure with a direct band gap by shear strain and applied electric field calculation and analysis. The stability of the structure<!--> <!-->is proved<!--> <!-->by calculating the phonon spectrum. The shear strain and the applied electric field can effectively regulate the band gap of ZrS<sub>2</sub>/ZrSe<sub>2</sub> heterostructures. The heterostructures have metallic properties when the electric field is 0.8 V/Å. The shear strain and the applied electric field can significantly change the dielectric constant of the ZrS<sub>2</sub>/ZrSe<sub>2</sub> heterostructure and the charge retention ability of the heterostructure. The optical absorption and reflection ability of ZrS<sub>2</sub>/ZrSe<sub>2</sub> heterostructure<!--> <!-->is enhanced<!--> <!-->under the action of the electric field. However, the absorption and reflection ability<!--> <!-->is significantly reduced<!--> <!-->when the electric field size is 0.8 and −0.05 V/Å. It shows that the applied electric field has a practical regulation effect on optical absorption and reflection. These findings broaden the potential applications of ZrS<sub>2</sub>/ZrSe<sub>2</sub> heterostructures in optoelectronics.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"589 ","pages":"Article 112518"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003471","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper uses the first principle calculation method based on density functional theory to systematically analyze the effects of different stacking modes, shear strain, and electric fields on the photoelectric properties of ZrS2/ZrSe2 heterojunction. Firstly, we analyze five different stacking modes and select the mode with the lowest formation energy. At the same time, ZrS2/ZrSe2 is a heterostructure with a direct band gap by shear strain and applied electric field calculation and analysis. The stability of the structure is proved by calculating the phonon spectrum. The shear strain and the applied electric field can effectively regulate the band gap of ZrS2/ZrSe2 heterostructures. The heterostructures have metallic properties when the electric field is 0.8 V/Å. The shear strain and the applied electric field can significantly change the dielectric constant of the ZrS2/ZrSe2 heterostructure and the charge retention ability of the heterostructure. The optical absorption and reflection ability of ZrS2/ZrSe2 heterostructure is enhanced under the action of the electric field. However, the absorption and reflection ability is significantly reduced when the electric field size is 0.8 and −0.05 V/Å. It shows that the applied electric field has a practical regulation effect on optical absorption and reflection. These findings broaden the potential applications of ZrS2/ZrSe2 heterostructures in optoelectronics.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.