Yusheng Wang , Sen Wang , Yongqi Zhang , Nahong Song , Shijun Luo , Bin Xu , Fei Wang
{"title":"Two-dimensional Zr2C monolayer as anode material for Li, Na and K ion batteries","authors":"Yusheng Wang , Sen Wang , Yongqi Zhang , Nahong Song , Shijun Luo , Bin Xu , Fei Wang","doi":"10.1016/j.chemphys.2024.112521","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the electronic properties and storage capacity of Zr<sub>2</sub>C after adsorption of Li, Na, and K metal ions are systematically investigated with density-functional theory (DFT) based on first-principles calculations. For Li, Na, and K ion adsorption, the negative adsorption energy indicates a strong interaction between the metal ions and the two-dimensional (2D) Zr<sub>2</sub>C monolayer, which prevents the formation of dendrites, and the adsorbed system has good metallic properties with low diffusion barriers, suitable open-circuit voltages, and high theoretical storage capacities. Our study shows that Zr<sub>2</sub>C monolayer is a promising anode material for metal-ion batteries.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"589 ","pages":"Article 112521"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003501","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the electronic properties and storage capacity of Zr2C after adsorption of Li, Na, and K metal ions are systematically investigated with density-functional theory (DFT) based on first-principles calculations. For Li, Na, and K ion adsorption, the negative adsorption energy indicates a strong interaction between the metal ions and the two-dimensional (2D) Zr2C monolayer, which prevents the formation of dendrites, and the adsorbed system has good metallic properties with low diffusion barriers, suitable open-circuit voltages, and high theoretical storage capacities. Our study shows that Zr2C monolayer is a promising anode material for metal-ion batteries.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.