Machine learning assisted designing of hole-transporting materials for high performance perovskite solar cells

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-11-12 DOI:10.1016/j.chemphys.2024.112515
Muhammad Saqib , Uzma Shoukat , Mohamed Mohamed Soliman , Shahida Bashir , Mudassir Hussain Tahir , Hamdy Khamees Thabet , Mohamed Kallel
{"title":"Machine learning assisted designing of hole-transporting materials for high performance perovskite solar cells","authors":"Muhammad Saqib ,&nbsp;Uzma Shoukat ,&nbsp;Mohamed Mohamed Soliman ,&nbsp;Shahida Bashir ,&nbsp;Mudassir Hussain Tahir ,&nbsp;Hamdy Khamees Thabet ,&nbsp;Mohamed Kallel","doi":"10.1016/j.chemphys.2024.112515","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the advancement of perovskite solar cells has accelerated, leading to continuous performance improvements. Over the past few years, machine learning (ML) has gained popularity among scientists researching perovskite solar cells. In this study, ML is used to screen hole-transporting materials for perovskite solar cells. To construct machine-learning (ML) models, data from prior investigations are collected. Out of four machine learning algorithms trained for predicting reorganization energy (Rh), the gradient boosting regression model stood out as the most effective, attaining an R<sup>2</sup> value of 0.89. Data visualization analysis is then utilized to scrutinize the patterns within the dataset. 10,000 new compounds are generated. Chemical space of generated compounds is visualized using various measures. Minor structural modifications resulted in only a slight alteration in reorganization energy (Rh). The newly introduced multidimensional framework has the potential to efficiently screen materials in a short amount of time.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"589 ","pages":"Article 112515"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003446","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the advancement of perovskite solar cells has accelerated, leading to continuous performance improvements. Over the past few years, machine learning (ML) has gained popularity among scientists researching perovskite solar cells. In this study, ML is used to screen hole-transporting materials for perovskite solar cells. To construct machine-learning (ML) models, data from prior investigations are collected. Out of four machine learning algorithms trained for predicting reorganization energy (Rh), the gradient boosting regression model stood out as the most effective, attaining an R2 value of 0.89. Data visualization analysis is then utilized to scrutinize the patterns within the dataset. 10,000 new compounds are generated. Chemical space of generated compounds is visualized using various measures. Minor structural modifications resulted in only a slight alteration in reorganization energy (Rh). The newly introduced multidimensional framework has the potential to efficiently screen materials in a short amount of time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习辅助设计用于高性能过氧化物太阳能电池的空穴传输材料
近年来,包晶体太阳能电池的发展日新月异,性能不断提高。在过去几年中,机器学习(ML)在研究包晶体太阳能电池的科学家中越来越受欢迎。在本研究中,ML 被用于筛选包晶体太阳能电池的空穴传输材料。为了构建机器学习(ML)模型,收集了先前研究的数据。在为预测重组能(Rh)而训练的四种机器学习算法中,梯度提升回归模型最为有效,其 R2 值达到 0.89。然后,利用数据可视化分析仔细研究数据集中的模式。生成 10,000 个新化合物。使用各种测量方法对生成化合物的化学空间进行可视化。微小的结构修改仅导致重组能(Rh)的轻微变化。新引入的多维框架具有在短时间内高效筛选材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
A novel eco-friendly depressant Scutellaria Baicalensis Extract SBE and its performance on flotation separation of chalcopyrite from sphalerite: A combined experimental and mechanism investigation Effect of mechanical ball milling on the microstructure and radiation shielding performance of nano-PbO Comment on “Relativistic spinless energies and thermodynamic properties of sodium dimer molecule” Tactfully regulating the ESIPT mechanism of novel benzazolyl-4-quinolones fluorophore by atomic electronegativity Response surface optimisation on Non-Uniform shapes ternary hybrid nanofluid flow in stenosis artery with motile gyrotactic microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1