Visualization of humpback whale tracking on edge device using space-borne remote sensing data for Indian Ocean

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2024-11-07 DOI:10.1016/j.ejrs.2024.10.004
S. Vasavi, Vasanthi Sripathi, Chandra Mouli Simma
{"title":"Visualization of humpback whale tracking on edge device using space-borne remote sensing data for Indian Ocean","authors":"S. Vasavi,&nbsp;Vasanthi Sripathi,&nbsp;Chandra Mouli Simma","doi":"10.1016/j.ejrs.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>The conservation of humpback whale populations faces ongoing challenges, including human-induced mortality, despite the ban on commercial whaling. Recent advancements in high-resolution satellite imagery offer promise for estimating whale populations, particularly in remote and inaccessible regions. However, significant research gaps persist, necessitating innovative approaches for effective monitoring and conservation efforts. This paper presents a novel methodology that integrates high- resolution satellite imagery with state-of-the-art deep learning techniques to monitor and conserve humpback whale populations, with a focus on the Indian Ocean region. Specifically, application of cutting-edge deep learning models such as YOLO for object detection and EfficientNet for classification to automate the detection, classification, and tracking of humpback whales in satellite images is explored. By leveraging deep convolutional neural networks (CNNs), the proposed ensemble system offers a robust and generalizable approach for automatically detecting, classifying, and tracking whales in space-borne satellite imagery, thereby addressing the challenge of uncertain whale populations in the world’s oceans. The results demonstrate promising accuracy and performance metrics: the Segment Anything Model(SAM) achieves an accuracy of 89.2%, YOLO achieves an accuracy of 99.2%, EfficientNet achieves an accuracy of 99% across various tasks.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 4","pages":"Pages 705-715"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000735","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The conservation of humpback whale populations faces ongoing challenges, including human-induced mortality, despite the ban on commercial whaling. Recent advancements in high-resolution satellite imagery offer promise for estimating whale populations, particularly in remote and inaccessible regions. However, significant research gaps persist, necessitating innovative approaches for effective monitoring and conservation efforts. This paper presents a novel methodology that integrates high- resolution satellite imagery with state-of-the-art deep learning techniques to monitor and conserve humpback whale populations, with a focus on the Indian Ocean region. Specifically, application of cutting-edge deep learning models such as YOLO for object detection and EfficientNet for classification to automate the detection, classification, and tracking of humpback whales in satellite images is explored. By leveraging deep convolutional neural networks (CNNs), the proposed ensemble system offers a robust and generalizable approach for automatically detecting, classifying, and tracking whales in space-borne satellite imagery, thereby addressing the challenge of uncertain whale populations in the world’s oceans. The results demonstrate promising accuracy and performance metrics: the Segment Anything Model(SAM) achieves an accuracy of 89.2%, YOLO achieves an accuracy of 99.2%, EfficientNet achieves an accuracy of 99% across various tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用印度洋空间遥感数据实现座头鲸在边缘装置上的可视化追踪
尽管禁止商业捕鲸,座头鲸种群的保护仍面临着持续的挑战,包括人类造成的死亡。高分辨率卫星图像的最新进展为估算鲸鱼种群数量带来了希望,尤其是在偏远和人迹罕至的地区。然而,研究方面仍然存在巨大的差距,因此需要创新的方法来进行有效的监测和保护工作。本文介绍了一种新颖的方法,该方法将高分辨率卫星图像与最先进的深度学习技术相结合,用于监测和保护座头鲸种群,重点关注印度洋地区。具体来说,该研究探讨了如何应用最先进的深度学习模型(如用于对象检测的 YOLO 和用于分类的 EfficientNet)来自动检测、分类和跟踪卫星图像中的座头鲸。通过利用深度卷积神经网络(CNNs),所提出的集合系统为自动检测、分类和跟踪天基卫星图像中的鲸鱼提供了一种稳健且可推广的方法,从而解决了世界海洋中鲸鱼数量不确定的难题。研究结果表明,该系统的准确率和性能指标都很不错:Segment Anything Model(SAM)的准确率达到了 89.2%,YOLO 的准确率达到了 99.2%,EfficientNet 在各种任务中的准确率达到了 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Efficient bundle optimization for accurate camera pose estimation in mobile augmented reality systems Revealing Potential Mineralization Zones Utilizing Landsat-9, ASTER and Airborne Radiometric Data at Elkharaza-Dara Area, North Eastern Desert, Egypt Potential of temporal satellite data analysis for detection of weed infestation in rice crop Visualization of humpback whale tracking on edge device using space-borne remote sensing data for Indian Ocean Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1