Nano-sized high-entropy oxide dispersoids for achieving high strength and thermal stability in tungsten alloys

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Fusion Engineering and Design Pub Date : 2024-11-13 DOI:10.1016/j.fusengdes.2024.114712
M.L. Yu , Z.M. Xie , X.F. Xie , W.B. Jiang , X. Dang , Z.L. Huang , Y.G. Zhang , R. Liu , X.B. Wu , C.S. Liu , Q.F. Fang
{"title":"Nano-sized high-entropy oxide dispersoids for achieving high strength and thermal stability in tungsten alloys","authors":"M.L. Yu ,&nbsp;Z.M. Xie ,&nbsp;X.F. Xie ,&nbsp;W.B. Jiang ,&nbsp;X. Dang ,&nbsp;Z.L. Huang ,&nbsp;Y.G. Zhang ,&nbsp;R. Liu ,&nbsp;X.B. Wu ,&nbsp;C.S. Liu ,&nbsp;Q.F. Fang","doi":"10.1016/j.fusengdes.2024.114712","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, pure W, W-0.8wt % (HfNbMoZrTi)B<sub>2</sub> and W-1.0wt % (HfNbMoZrTi)B<sub>2</sub> (abbreviated as W-0.8HEB and W-1.0HEB, respectively) materials were fabricated using mechanical ball milling and spark plasma sintering. The effects of HEB addition on the microstructure, mechanical properties, and thermal conductivity were studied. The W-0.8HEB materials demonstrated a high hardness of approximately 506 Hv and a high yield strength of 1774 MPa, surpassing those of pure W and W-1.0HEB. Additionally, the recrystallization temperature of W-0.8HEB reached up to 1800 °C, higher than that of most reported W materials. HRTEM results revealed highly stable, nanosized, brookite-structured (HfNbMoZrTi)O<sub>2</sub> particles formed by an in-situ reaction between (HfNbMoZrTi)B<sub>2</sub> and O impurities during high-temperature sintering. This reaction diminishes the interstitial O concentration in W, resulting in enhanced mechanical properties and thermal stability.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"209 ","pages":"Article 114712"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005635","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, pure W, W-0.8wt % (HfNbMoZrTi)B2 and W-1.0wt % (HfNbMoZrTi)B2 (abbreviated as W-0.8HEB and W-1.0HEB, respectively) materials were fabricated using mechanical ball milling and spark plasma sintering. The effects of HEB addition on the microstructure, mechanical properties, and thermal conductivity were studied. The W-0.8HEB materials demonstrated a high hardness of approximately 506 Hv and a high yield strength of 1774 MPa, surpassing those of pure W and W-1.0HEB. Additionally, the recrystallization temperature of W-0.8HEB reached up to 1800 °C, higher than that of most reported W materials. HRTEM results revealed highly stable, nanosized, brookite-structured (HfNbMoZrTi)O2 particles formed by an in-situ reaction between (HfNbMoZrTi)B2 and O impurities during high-temperature sintering. This reaction diminishes the interstitial O concentration in W, resulting in enhanced mechanical properties and thermal stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实现钨合金高强度和热稳定性的纳米级高熵氧化物分散体
本文利用机械球磨和火花等离子烧结技术制备了纯 W、W-0.8wt % (HfNbMoZrTi)B2 和 W-1.0wt % (HfNbMoZrTi)B2(分别简称为 W-0.8HEB 和 W-1.0HEB)材料。研究了添加 HEB 对微观结构、机械性能和热导率的影响。W-0.8HEB 材料具有约 506 Hv 的高硬度和 1774 MPa 的高屈服强度,超过了纯 W 和 W-1.0HEB 材料。此外,W-0.8HEB 的再结晶温度高达 1800 °C,高于大多数报道的 W 材料。HRTEM 结果显示,(HfNbMoZrTi)B2 和 O 杂质在高温烧结过程中发生原位反应,形成了高度稳定的纳米级溪石结构 (HfNbMoZrTi)O2 颗粒。这种反应降低了 W 中的间隙 O 浓度,从而提高了机械性能和热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
期刊最新文献
Research and development on vanadium alloys for fusion breeder blanket application JET CODAS - the final status Study and analysis of the design considerations for controlling vertical plasma position in ADITYA-U tokamak Novel high temperature tritium blanket designs for confined spaces in spherical tokamak fusion reactors Installation, thermal curing, qualification testing of divertor and position control coils in ADITYA-U tokamak
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1