Investigation into shear-thinning behavior in wet spinning of carbon nanotube fibers modeled by power law viscosity model

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-10-28 DOI:10.1016/j.carbon.2024.119766
Jaegyun Im , Min Chan Kim , Chanwoo Park , Yun Ho Jeong , Beomjin Jeong , Kyu Hyun , Jaegeun Lee
{"title":"Investigation into shear-thinning behavior in wet spinning of carbon nanotube fibers modeled by power law viscosity model","authors":"Jaegyun Im ,&nbsp;Min Chan Kim ,&nbsp;Chanwoo Park ,&nbsp;Yun Ho Jeong ,&nbsp;Beomjin Jeong ,&nbsp;Kyu Hyun ,&nbsp;Jaegeun Lee","doi":"10.1016/j.carbon.2024.119766","DOIUrl":null,"url":null,"abstract":"<div><div>The wet spinning of carbon nanotube (CNT) fibers, a representative solution processing of CNTs, has been advanced through the integration of well-established polymer sciences into their field. However, the flow behavior of CNT dispersions in the narrow spinning line, where its characteristics undergo changes due to the high-shear rate regime, has not been utilized to determine their spinnability, despite being a commonly employed method in the wet spinning of polymer fibers. Herein, we employed the power law viscosity model to investigate the correlation between flow behavior and the spinnability of CNT dispersion through the power law index which approaches to 0 as the shear-thinning behavior strengthens. We suggest that the spinnability of CNT dispersion is proportional to the degree of shear-thinning behavior of the dispersion. We ascribe this correlation to the integrity of CNT fibers which predominantly rely on the strong van der Waals forces between CNTs. These findings offer new insights into the role of fiber integrity in spinnability and provide a framework for optimizing the wet spinning process of CNT fibers through detailed analysis of dispersion flow behavior.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119766"},"PeriodicalIF":11.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009850","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The wet spinning of carbon nanotube (CNT) fibers, a representative solution processing of CNTs, has been advanced through the integration of well-established polymer sciences into their field. However, the flow behavior of CNT dispersions in the narrow spinning line, where its characteristics undergo changes due to the high-shear rate regime, has not been utilized to determine their spinnability, despite being a commonly employed method in the wet spinning of polymer fibers. Herein, we employed the power law viscosity model to investigate the correlation between flow behavior and the spinnability of CNT dispersion through the power law index which approaches to 0 as the shear-thinning behavior strengthens. We suggest that the spinnability of CNT dispersion is proportional to the degree of shear-thinning behavior of the dispersion. We ascribe this correlation to the integrity of CNT fibers which predominantly rely on the strong van der Waals forces between CNTs. These findings offer new insights into the role of fiber integrity in spinnability and provide a framework for optimizing the wet spinning process of CNT fibers through detailed analysis of dispersion flow behavior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用幂律粘度模型研究碳纳米管纤维湿法纺丝中的剪切稀化行为
碳纳米管(CNT)纤维的湿法纺丝是 CNT 的一种代表性溶液加工方法,通过将成熟的聚合物科学融入其领域,该方法得到了进一步发展。然而,尽管碳纳米管分散体是聚合物纤维湿法纺丝中常用的方法,但其在窄纺丝生产线上的流动行为却未被用于确定其可纺性。在此,我们采用幂律粘度模型,通过幂律指数(随着剪切稀化行为的加强,幂律指数趋近于 0)来研究流动行为与 CNT 分散体可纺性之间的相关性。我们认为,碳纳米管分散体的可纺性与分散体的剪切稀化程度成正比。我们将这种相关性归因于碳纳米管纤维的完整性,这种完整性主要依赖于碳纳米管之间强大的范德华力。这些发现为了解纤维完整性在可纺性中的作用提供了新的视角,并为通过详细分析分散流动行为来优化 CNT 纤维的湿法纺丝工艺提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Spatially varying wettability and resistivity in laser-induced graphene for flexible microfluidics, programmable heaters, and thermochromic displays Atomically tailored heteroatom-doped hard carbon from structure-engineered coordination-crosslinked polymers for potassium-ion storage Vanadium-doped cobalt selenide nanoparticles embedded in mesoporous hollow carbon spheres as highly efficient bifunctional electrocatalyst for rechargeable Zn-air batteries CeOx-functionalized Pd nanoparticles on single-walled carbon nanotubes for alkaline hydrogen oxidation reaction High-electronegativity O-triggered vacancy defects and ionic channels in N-doped carbon-confined amorphous Mo–O clusters for high-performance potassium-ion hybrid capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1