Ameen Abdel Hai , Mark G. Weiner , Alice Livshits , Jeremiah R. Brown , Anuradha Paranjape , Wenke Hwang , Lester H. Kirchner , Nestoras Mathioudakis , Esra Karslioglu French , Zoran Obradovic , Daniel J. Rubin
{"title":"Domain generalization for enhanced predictions of hospital readmission on unseen domains among patients with diabetes","authors":"Ameen Abdel Hai , Mark G. Weiner , Alice Livshits , Jeremiah R. Brown , Anuradha Paranjape , Wenke Hwang , Lester H. Kirchner , Nestoras Mathioudakis , Esra Karslioglu French , Zoran Obradovic , Daniel J. Rubin","doi":"10.1016/j.artmed.2024.103010","DOIUrl":null,"url":null,"abstract":"<div><div>A prediction model to assess the risk of hospital readmission can be valuable to identify patients who may benefit from extra care. Developing hospital-specific readmission risk prediction models using local data is not feasible for many institutions. Models developed on data from one hospital may not generalize well to another hospital. There is a lack of an end-to-end adaptable readmission model that can generalize to unseen test domains. We propose an early readmission risk domain generalization network, ERR-DGN, for cross-domain knowledge transfer. ERR-DGN internalizes the shared patterns and characteristics that are consistent across source domains, enabling it to adapt to a new domain. It transforms source datasets to a common embedding space while capturing relevant temporal long-term dependencies of sequential data. Domain generalization is then applied on domain-specific fully connected linear layers. The model is optimized by a loss function that integrates distribution discrepancy loss to match the mean embeddings of multiple source distributions with the task-specific loss.</div><div>A model was developed using electronic health record (EHR) data of 201,688 patients with diabetes across urban, suburban, rural, and mixed hospital systems to enhance 30-day readmission predictions among patients with diabetes on 67,066 unseen patients at a rural hospital. We also explored how model performance varied by the number of sites and over time. The proposed method outperformed the baseline models, yielding a 6 % increase in F1-score (0.79 ± 0.006 vs. 0.73 ± 0.007). Model performance peaked with the inclusion of three sites. Performance of the model was relatively stable for 3 years then declined at 4 years. ERR-DGN may be a proficient tool for learning data from multiple sites and subsequently applying a hospitalization readmission prediction model to a new site. Including a relatively small number of varied sites may be sufficient to achieve peak performance. Periodic retraining at least every 3 years may mitigate model degradation over time.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"158 ","pages":"Article 103010"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365724002525","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A prediction model to assess the risk of hospital readmission can be valuable to identify patients who may benefit from extra care. Developing hospital-specific readmission risk prediction models using local data is not feasible for many institutions. Models developed on data from one hospital may not generalize well to another hospital. There is a lack of an end-to-end adaptable readmission model that can generalize to unseen test domains. We propose an early readmission risk domain generalization network, ERR-DGN, for cross-domain knowledge transfer. ERR-DGN internalizes the shared patterns and characteristics that are consistent across source domains, enabling it to adapt to a new domain. It transforms source datasets to a common embedding space while capturing relevant temporal long-term dependencies of sequential data. Domain generalization is then applied on domain-specific fully connected linear layers. The model is optimized by a loss function that integrates distribution discrepancy loss to match the mean embeddings of multiple source distributions with the task-specific loss.
A model was developed using electronic health record (EHR) data of 201,688 patients with diabetes across urban, suburban, rural, and mixed hospital systems to enhance 30-day readmission predictions among patients with diabetes on 67,066 unseen patients at a rural hospital. We also explored how model performance varied by the number of sites and over time. The proposed method outperformed the baseline models, yielding a 6 % increase in F1-score (0.79 ± 0.006 vs. 0.73 ± 0.007). Model performance peaked with the inclusion of three sites. Performance of the model was relatively stable for 3 years then declined at 4 years. ERR-DGN may be a proficient tool for learning data from multiple sites and subsequently applying a hospitalization readmission prediction model to a new site. Including a relatively small number of varied sites may be sufficient to achieve peak performance. Periodic retraining at least every 3 years may mitigate model degradation over time.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.