Ya Sun , Yangyi Deng , Syed-Muzyan Shahzad , Bo Chen
{"title":"A study of crustal deformation beneath the Qinling Orogenic belt, Central China based on receiver function data","authors":"Ya Sun , Yangyi Deng , Syed-Muzyan Shahzad , Bo Chen","doi":"10.1016/j.jseaes.2024.106404","DOIUrl":null,"url":null,"abstract":"<div><div>A joint shear wave splitting technique based on receiver function data is employed to invert the crustal anisotropy, Moho depth, and Vp/Vs ratio in the Qinling Orogenic belt (QOB). Our findings reveal a relatively low Vp/Vs ratio (∼1.74) and a thin crust in east QOB. This suggests that potential crustal flow from central Tibet may not significantly influence the crustal deformation in east QOB. Our results demonstrate high Vp/Vs ratios (∼1.75–1.88), thick crust (∼44–56 km), and significant crustal anisotropy with a delay time of 0.22–0.86 s in south QOB, Dabashan, and west QOB regions. The fast directions of crustal anisotropy in the south QOB and Dabashan areas are NW-SE, which reflect the orientation of crustal fabrics associated with the collision between the North China Block and the South China Block. However, weak or negligible splitting times are observed beneath the Shennongjia-Huangling (SNHL), Hannan-Micang (HNMC) domes, and Jianghan Basin. The presence of weak crustal anisotropy is likely related to the stable basements beneath two domes, while the negligible splitting time beneath the Jianghan Basin might be attributed to the nearly vertical α-axis of olivines or mica associated with a subvertical mantle flow caused by slab break-off of the subducted Yangtze Block. The underlying magmas have gathered in the lower crust and formed the mafic lower crust, which cause an increase in the crust Vp/Vs ratio and crustal extension.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"277 ","pages":"Article 106404"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003997","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A joint shear wave splitting technique based on receiver function data is employed to invert the crustal anisotropy, Moho depth, and Vp/Vs ratio in the Qinling Orogenic belt (QOB). Our findings reveal a relatively low Vp/Vs ratio (∼1.74) and a thin crust in east QOB. This suggests that potential crustal flow from central Tibet may not significantly influence the crustal deformation in east QOB. Our results demonstrate high Vp/Vs ratios (∼1.75–1.88), thick crust (∼44–56 km), and significant crustal anisotropy with a delay time of 0.22–0.86 s in south QOB, Dabashan, and west QOB regions. The fast directions of crustal anisotropy in the south QOB and Dabashan areas are NW-SE, which reflect the orientation of crustal fabrics associated with the collision between the North China Block and the South China Block. However, weak or negligible splitting times are observed beneath the Shennongjia-Huangling (SNHL), Hannan-Micang (HNMC) domes, and Jianghan Basin. The presence of weak crustal anisotropy is likely related to the stable basements beneath two domes, while the negligible splitting time beneath the Jianghan Basin might be attributed to the nearly vertical α-axis of olivines or mica associated with a subvertical mantle flow caused by slab break-off of the subducted Yangtze Block. The underlying magmas have gathered in the lower crust and formed the mafic lower crust, which cause an increase in the crust Vp/Vs ratio and crustal extension.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.