Design, synthesis of antipyrine-based Schiff bases and investigation of their cholinesterase and carbonic anhydrase activities by in vitro and in silico approaches
{"title":"Design, synthesis of antipyrine-based Schiff bases and investigation of their cholinesterase and carbonic anhydrase activities by in vitro and in silico approaches","authors":"Reşit Çakmak , Eyüp Başaran , Burçin Türkmenoğlu , Murat Şentürk","doi":"10.1016/j.molstruc.2024.140599","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a series of antipyrine-based Schiff bases (<strong>1</strong>–<strong>10</strong>) was designed, synthesized, and evaluated as potential inhibitors of various metabolic enzymes, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human erythrocyte carbonic anhydrase I and II (hCA I and hCA II). The target molecules were characterized by UV–vis, FT-IR, <sup>1</sup>H NMR, <sup>13</sup>CNMR, LC-HRMS, and elemental analysis. All tested derivatives demonstrated low nanomolar inhibition with <em>K</em><sub>i</sub> values of in the range of 20.58 ± 0.35 to 53.11 ± 1.02 nM against AChE, 21.84 ± 0.40 to 54.41 ± 1.05 nM against BChE, 27.45 ± 0.41 to 48.22 ± 0.91 nM against cytosolic hCA I isoform associated with epilepsy, and 6.02 ± 0.11 to 29.32 ± 0.54 nM against cytosolic hCA II isoform associated with glaucoma. In general, most these molecules, except for a few, inhibited these enzymes more than acetazolamide (AZA) and neostigmine. Among them, compounds <strong>5, 7, 8</strong>, and <strong>9</strong> showed the best inhibitory activities against AChE, BChE, hCA I, and hCA II, respectively. Docking results were calculated for the compounds that showed the best inhibitory activity against these enzymes and for reference compounds. Based on the molecular docking results, they were determined to have high binding energies, including hydrogen bonds, electrostatic interactions, and hydrophobic interactions. Absorption, distribution, metabolism, and excretion (ADME) parameters determined that all the synthesized pyrazolone ring-bearing Schif base derivatives (<strong>1</strong>–<strong>10</strong>) have the expected physicochemical properties in terms of drug-likeness and can be evaluated as orally active potential. Properties such as the electrophilicity index and chemical hardness were also investigated by density functional theory (DFT) at the B3LYP/6–311G** level of theory.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140599"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a series of antipyrine-based Schiff bases (1–10) was designed, synthesized, and evaluated as potential inhibitors of various metabolic enzymes, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human erythrocyte carbonic anhydrase I and II (hCA I and hCA II). The target molecules were characterized by UV–vis, FT-IR, 1H NMR, 13CNMR, LC-HRMS, and elemental analysis. All tested derivatives demonstrated low nanomolar inhibition with Ki values of in the range of 20.58 ± 0.35 to 53.11 ± 1.02 nM against AChE, 21.84 ± 0.40 to 54.41 ± 1.05 nM against BChE, 27.45 ± 0.41 to 48.22 ± 0.91 nM against cytosolic hCA I isoform associated with epilepsy, and 6.02 ± 0.11 to 29.32 ± 0.54 nM against cytosolic hCA II isoform associated with glaucoma. In general, most these molecules, except for a few, inhibited these enzymes more than acetazolamide (AZA) and neostigmine. Among them, compounds 5, 7, 8, and 9 showed the best inhibitory activities against AChE, BChE, hCA I, and hCA II, respectively. Docking results were calculated for the compounds that showed the best inhibitory activity against these enzymes and for reference compounds. Based on the molecular docking results, they were determined to have high binding energies, including hydrogen bonds, electrostatic interactions, and hydrophobic interactions. Absorption, distribution, metabolism, and excretion (ADME) parameters determined that all the synthesized pyrazolone ring-bearing Schif base derivatives (1–10) have the expected physicochemical properties in terms of drug-likeness and can be evaluated as orally active potential. Properties such as the electrophilicity index and chemical hardness were also investigated by density functional theory (DFT) at the B3LYP/6–311G** level of theory.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.